AARDVARK:
A H GHLY VI RUS-RESI STANT COMPUTER ARCHI TECTURE

A Thesi s

Submtted to the Faculty

of

Rose—Hul man I nstitute of Technol ogy

by

Charl es Janes WI son

In Partial Fulfillment of the

Requirerments for the Degree

of

Mast er of Science in El ectrical Engineering

Novenber 1993

Copyri ght © 1993-1999 Charles Janes WI son

Al R ghts Reserved

No part of this publication my be reproduced, stored in a
retrieval system or transmtted in any form or by any
nmeans—el ectroni c, nmechani cal, recordi ng, or ot herw se—wi t hout
the prior perm ssion of the author.

Dal | as Sem conduct or dat asheets courtesy of Dall as
Sem conduct or, Inc.

VLSI Technol ogy dat asheets courtesy of VLSI Technol ogy, Inc.
Al trademarks are registered by their respective owners.
March 1999

Second Printing, with revisions

Printed in the United States of Anerica

ABSTRACT

Wl son, Charles Janmes, Rose—Hul man Institute of Technol ogy,
|[Novenber 1993. Aardvark: A Hi ghly Virus-Resistant Conputer
Architecture. Mjor Professor: Bruce A Bl ack.

Aardvark is a highly virus-resistant conputer
architecture based on existing technol ogi es. The
virus—resi stant nature stens fromthe use conpl enentary
mechani sns: dual |evel systemroutines in ROM (split SROV),
physically separate instruction and data spaces (separate |
and D) and executabl e i mage encryption. These three
mechani sns protect the conmputer systemfromlow | eve
operating systemroutines that circunvent high | evel security
schenes by accessing the conputer systenmis drivers directly,
nodi fication of in-nenory executabl es and nodification of

non—-l oaded execut abl e i mages respectively.

Dedi cated to the people who believed nore in ne than |
did in nyself, especially ny father whose encouragenent neant

nore than | coul d have ever possibly expressed.

ACKNONLEDGEMENTS
You do not just wake up one norning and decide, “I feel
brilliant today; | think I'll wite a naster's thesis on

vi rus—resi stant conmputer architectures.” My father encouraged
me even when | was destroying things around the house to
realize ny designs. Darrel Ciss and M ke Atkins chall enged
ny mnd during ny undergraduate studies. Wlford Stratton,
Donald Morin and Alfred Schmdt |istened to and encouraged ny
i deas for enhancing man’s ability to utilize technol ogy.
Emmett Bl ack taught me how to deal with corporate types at
CGeneral Electric Space Systens. David Wse showed nme what it
meant to be a debuggi ng expert. Frank Young thought a thesis
on conputer virus protection would be a pretty neat idea.
Philip Fow er believed that | could do it.
Charl es Janmes WI son
Rose—Hul man I nstitute of Technol ogy

Novenber 1993

Vi

PREFACE

Because of the conplex nature of conputer viruses and
the conplex way in which they interact with conputer systens,
the solution is not sinply explained. Many tinmes in this
docunent it is necessary to refer to elenents of Aardvark
whi ch have not yet been introduced. A so, since Aardvark by
necessity deals with a software and operating systemissue
wi th a hardware—based sol ution, the reader is assuned to be
confortable with this kind of approach. The ideal reader is
one who has a know edge of conputer virus pathology, is
hi ghly conversant with conputer architecture and has a firm
grasp of conputer systemsoftware design. Realizing that this
is not a likely conbination of know edge bases, | have
attenpted to explain those concepts which may be unfamliar
to sone readers. In order to aid the reader further, there is
an extensive section of references separated into groups

follow ng the main body of the text.

TABLE OF CONTENTS

ACKNONLEDGEMENTS

PREFACE

LI ST OF TABLES

LI ST OF FI GURES

GLOSSARY

1. INTRCDUCTION .

Statement of the Problem
| mportance of the Probl em

Pur pose of Aardvark .o
What Aardvark WIl Not Do

PR

2

GROUND MATERI AL
Summary St at enment
Nonmencl at ur e
Overvi ew

Propagati on
Pat hogenesi s
Carriers
Troj an Horses
Vr ns :

Targets of Attack

File System
. 1. Overview) .

. 2. Nui sance I ncursi on
.3. Malicious Incursion

Data Files . .

Application Execut abl es .o
Appl i cati on Executabl e I nf ection
Overview . .
Met hods of Viral Infection
Tai | Pat chi ng .
Overwriting :

Rout i ne REpIacenent
Virus Sel f —protection .o .
Approaches to Virus Prot ecti on

Tradi tional Approaches
.1. Boot-tinme Scanning .

.2. Application Executable Checksunn1ng
.3. Application Self-checking

GURWNE WNRERRE NOORONE

WP R RR

Aar dvark’ s Approach
Difficulties in Research

NNRNNNNRNRNNNRNNRNNNNRNNNNRNNNNNNNE prep

NOOSOOOOUTARARARRAWWWWWWWONNNNNNNNDE

Trusted and Non-trusted Appllcatlons'

Probl ens Wth Traditional Apprdaches'

Vi i

viii

3. COWUTER ARCH TECTURES . . Ce e 22
3.1. Conventional Conputer Architecture 22
3.2. Aardvark’s Conputer Architecture 24
3.2.1. Description of Aardvark C e e e 24

4. ARCH TECTURAL ELEMENTS 27
4.1. Introduction . Ce e 27
4.2. Main Processor/Subsysten1Cbnnunlcatlon Coe 27
4.3. Non-Volatile RAM 29
4.3.1. Purpose C e e e e e 29
4.3.2. NVRAM Layout C e e e e 29
4.3.3. NVRAM Hardware 30
4.3.4. NVRAM Dat a El enents C e e e e e 30
4.3.4.1. File Signature 30
4.3.4.1.1. Application Type 31
4.3.4.1.2. ApplicationID 31
4.3.4.1.3. Configuration Data . . G e e 31
4.3.4.1.4. File Signature Adri ni stration Coe e 32
4.3.4.2. Checksum 33
4.3.4.2.1. Querviewo 33
4.3.4.2.2. Operation C e e 33
4.3.4.3. Encryption Key 33
4.3.4.3.1. Background . Coe e 33
4. 4. Application Execut abl e EECryptlon Loglc Coe 34
4.4.1. Introduction . Ce e 34
4.4.2. Data Encryption Standard 34
4.4.3. DES Hardware . . . C e e e 35
4.5. Touch Menmory™ oo 35
4.5.1. Overview . C e e e e 35
4.5.2. Touch annryTMlnterface Ce e e 36
4.5.3. Encryption Key Expansion 37

5. APPLICATION LIFE CYCLE 39
5.1. Introduction . C e e e e e 39
5.2. Application Installation 39
5.2.1. Overview . Coe e 39
5.2.2. Non-trusted Appllcatlon Installation 39
5.2.3. Trusted Application Installation 40
5.2.3.1. Introduction . Ce e 40
5.2.3.2. Installation Hardware Interface e e 40
5.2.3.2.1. Front Panel Interface Ce e e 40
5.2.3.2.2. Nornal/Load Mbde Switch G e e 41
5.2.3.3. Installation User Interface Ce e 43
5.3. Application Execution C e e e e 45
5.3.1. Overview . Ce e e e 45
5.3.2. Application Type Checklng Ce e 45
5.3.3. Application Checksumm ng . Ce e 47
5.3.4. Application Executable Loadlng Ce e 49
5.3.4.1. Qverview . . Ce e 49
5.3.4.2. Non-trusted Segnent Loadlng Coe e e 49
5.3.4.3. Trusted Segnent Loadi ng Ce e e 49
5.3.5. Segnent Swapping . Ce e e 50
5.4. Application Deinstal lation 51

5.4.1. QOverview . . .
5.4.2. Non-trusted Appllcatlon Dei nstal | ati on
5.4.3. Trusted Application Deinstallation
5.4.3.1. Introduction .
5.4.3.2. Deinstallation Hardware Interface
5.4.3.3. Deinstallation User Interface
5.5. Application Upgrading .
5.5.1. Overview . . :
5.5.2. Non-trusted Appllcatlon Upgradlng
5.5.3. Trusted Application Upgradi ng

6. SYSTEM I NTERRI TY
6.1. Introduction
6.2. Code Integrity . S
6.2.1. Physically Separate | and D .
6.2.2. Application Executable Protection

6. 3. ROM Code
7. ARCH TECTURAL EXTENSI ONS

7.1. CGeneral Comments .)
7.2. Encrypting User Appllcatlons
7.2.1. Overview . . .
7.2.2. Pronoting Appllcatlons -
7.2.3. Sem —automatic Key Loading
7.3. Secure Distribution Mdia
7.3.1. Overview Coe e
7.3.2. CDROM

7.3.3. PCMO A

7.4,

Data File Securlty

8. SOFTWARE PI RACY :
8.1. Summary Stat ement
8.2. Scope Coe

9. Trusted Application Developnent
9.1. Introduction . .
9.2. Trusting Trust Co
9.3. Application Creation
9.4. Application Encryption
9.5. Application Distribution

10. CONCLUSI ONS AND RECOMVENDATI ONS
10. 1. Concl usi ons)
10. 2. Reconmmendati ons

REFERENCES : :
R 1. General References .

. National Security Agency
Data Encryption .
Virus Creators
Conput er Ar chi tect ure
Ctations

AA000D0
OURWNI

APPENDI X A - EXOTl C HARDWARE DATA SHEETS Coe e e 87
A 1. Overview . C e e e e 87
A 2. DELG45EE NVSRAM : Ce e e 88
A 3. VMO7 DES Encrypter/ Decr ypt er Ce e 96
A 4. Touch Menmory™ . e Y R

VITAE12

Table 1 -

LI ST OF TABLES

File Signature Configuration Bit O

Xi

64

Fi gure
Fi gure
Fi gure
Fi gure
Fi gure
Fi gure
Fi gure
Fi gure
Fi gure
Fi gure
|Fi gure
Fi gure
Fi gure
Fi gure
Fi gure
Fi gure
Fi gure
Fi gure
Fi gure
Fi gure
Fi gure
Fi gure
Fi gure
Fi gure
Fi gure

© 00 N o g b~ w N PP

N NN N NN P R PR R R R R R R
g N W N P O © © N O OO M W N B O

LI ST OF FI GURES

Appl i cation Executabl e Model
Poi nter/ Segnent Rel ati onshi p
Tail Patching Infection
Overwriting Infection
Routi ne Repl acenent I nfection
Conventi onal Conputer Architecture
Aardvark’ s Conputer Architecture
Mai n Processor / Subsystem Communi cati on
Non-vol atil e RAM | ayout
Application Signature El enents
Configuration Data Bit fields
Ki nkaj ou Interface
Encrypti on Key Expansion
Aar dvar k- based Conputer Front Panel
Normal / Load Switch Interface
Normal / Load Logic
Top Level User Interface
Instal | ati on User Interface
Gopher Interface
Cricket Interface
Dol phin Interface
Dei nstal l ation User Interface
Dei nstal l ati on Confirnmation D al ogue
Upgr ade Confirmation D al ogue
SROM partitioning

10
12
14
15
24
25
28
29
30
32
37
38
41
42
43
44
44
46
48
50
53
53
55
59

Figure 26 -
Figure 27 -

Packrat Interface

Execut abl e Encrypti on Extension

Xiii

60
63

G CSSARY

Aardvark - A pseudo—acronymfor A H ghly Virus-resistant
Conputer Architecture (AHVRCA).

appending - A nethod of viral infection in which viral code
is appended to the end of an application s exit
sequence code.

Cricket - The checksumm ng | ogic within an Aardvar k-based
conput er.

Data Encryption Standard - An NSA supported standard for the
encryption of conmputer data.

DES (see Data Encryption Standard)

designer virus - Atype of virus tailored to attack a
specific application.

Dol phin - The decryption logic wthin an Aardvar k—-based
conput er.

Gopher - The NVRAM | ookup | ogic within an Aardvar k—based
conput er.

Ki nkaj ou - The Touch Menory™interface logic within an
Aar dvar k—based conput er

National Security Agency (NSA)- An agency of the federal
governnent responsi ble for the comunicati ons security
of the United States and is highly concerned with the
use of cryptol ogic techniques as used in
comuni cati on.

NSA (see National Security Agency)

XV

NVRAM - Non-Vol atil e Random Access Menory. Menory which is
not subject to | oss of data when external power is
renoved. This is acconplished through the use of an
internal battery and circuitry which detects the |oss
of external power.

NVSRAM - Non-Vol atile Static Random Access Menory. NVRAM
which is in the static nenory cl ass.

overwiting - A nmethod of viral infection acconplished by
conpletely overwiting the existing code segnents with
no attenpt nmade to preserve the original application
functionality.

PCMCI A (see Personal Conmputer Menory Card Internationa
Associ ati on)

Personal Conputer Menory Card International Association -
(alternately: People Can’t Manage Creating
Intelligible Acronyns). A 300 menber consortium of
conput er manufacturers acting as a standards body and
trade organi zation to develop and pronote snall
form-factor personal conputer devices. PCMCI A may be
used to refer to a device interface or the device
itself (c.f. SCSl).

prepending - A nethod of viral infection in which virus code
is prepended to the beginning of the execution
sequence of an application.

routine replacenent - A nethod of viral infection in which
the virus replaces the application’s routines with its

own.

XVi

shell - A nethod of viral infection in which viral code is
bot h prepended and appended to the application’s code.

SROM - System ROM Systemroutines stored in Read-Only Menory
used to store large collections of common subroutines.
On | BM PC-based systens the SROMis referred to as the
Bl OS (Basi c | nput/Qutput Systen).

tail-patching - A nethod of viral infection in which vira
code is appended to the end of an application’ s code.

Touch Menory™- A tradenarked serial data stream delivery
syst em devel oped by Dall as Sem conductor for use in
hostil e environnents.

Trojan Horse - A hostile application disguised as a harnmnl ess
one.

Wrm - A sel f—contained application, usually found within
conput er networks, which has the operational features
of a conputer virus but does not infect other

applications in its replication process.

1. | NTRCDUCTI ON
1.1. Statenent of the Problem

Since the advent of the conputer, individuals have
created prograns designed to gain access to data to which
they would not normally have access to and possi bly damage or
destroy this data. The reasons for this type of activity

range fromcuriosity to revenge to espi onage.

1.2. Inportance of the Problem

Any | oss of data or resource control (e.g., when a
conputer systemis overwhel ned by a parasitic programthat
has instantiated itself and is consum ng nost or all of the
processing capabilities) is alnost always costly to the owner
of a conputer system This cost includes tine lost to
renoving a detected virus fromthe systemand the associ at ed
scanni ng of tape backups to assure their integrity, tine |ost
in data restoration or in sonme cases reconstruction,
processing time lost to virus detection software and tine and
noney needed to restore or replace faulty software. Any
advances in the area of conputer system design which address

this area woul d produce considerabl e savi ngs.

1.3. Purpose of Aardvark

Aardvark is a conputer architecture designed to be
highly virus-resistant. It is intended to protect the
integrity of application executables throughout their
lifetime, frominstallation, through execution(s) until their
final deinstallation. Since the main nmechani smof viral
propagation is through the instantiation of viral code into
ot her application executables, this effectively prevents the
spread of viruses within the conputer system

Addi tionally, the architecture provides for a dual |eve
interface to the systemroutines in ROM (SROM. The interface
is set up in such a way as to prevent applications currently
in execution fromdirectly accessing |ow | evel driver
routines. This protects the conputer systemfrom attacks
whi ch use these | ow | evel routines to do danmage.

Upon detection of an attenpted viral attack, the
conputer systeminforns the user that such an attack is
taking place or has taken place. Further, the conputer system
instructs the user as to what action may be taken to
elimnate the threat posed.

The design of Aardvark also allows for higher confidence
in data files created by '"trusted applications. Data files
created by these trusted applications may only be nodified by
their creator. Qther applications would be allowed read only

access to the files.

1.4. What Aardvark WI| Not Do

Aardvark is designed to deal with the spread of viruses
to other applications. It does not prevent a virus from being
i ntroduced into the conputer system but rather prevents any
vi rus whi ch has been introduced through an non-trusted
application fromspreading. If a virus is introduced into an
Aar dvar k—based conputer systemthere is still the possibility
that it nmay damage non-trusted application executables or

data files.

2. BACKGROUND NVATERI AL
2.1. Summary Statenent

To properly evaluate the solution proposed in this
paper, it is necessary to understand the techni ques enpl oyed

by virus prograns.

2.2. Nonencl ature
2.2.1. Overview

Conput er viruses have evol ved from sinpl e prograns which
were crude in both their nethod of attack and their interna
design into sophisticated prograns capabl e of perform ng
highly intricate operations on the file systemand user files
within a conputer system Sone el ude virus scanners and nmay
even infect applications being used to detect and elimnate
viruses. It is inportant to establish some paraneters with
whi ch to bound what will be considered a conputer virus

within the scope of this work.

2.2.2. Trusted and Non-trusted Applications

Throughout this work there will be constant references
to ‘trusted and ‘non-trusted’ applications. Wthin the scope
of this work a trusted application shall be one whose
appl i cati on executabl e has been verified to contain no

viruses and has been protected using the mechani sns provided

by Aardvark. A non-trusted application is one that does not

have both of these attri butes.

2.2.3. Propagation

One of the nost prom nent features of a conputer virus
is propagation. The faster a virus spreads into other
applications the nore quickly it tends to be detected. Sone
viruses target specific application executables, such as
system applications, so that they may spread quickly. Qhers
wait until an infected application executable is noved onto

anot her conputer system

2.2.4. Pathogenesis

A conmputer virus may be pathogenic in nature. Somne
viruses nerely announce that they are present within an
application in order to bring attention to the author of the
virus. O hers are designed to destroy data or applications.
Unfortunately, viruses designed to attack a conputer’s file
system may i nadvertently damage data structures which were

not the target of the viral attack

2.2.5. Carriers

Sone conputer viruses nmake use of carriers in their
propagation. These carrier applications are infected with the
virus, but the virus will not becone active or be spread

further until placed into a suitable environnent.

2.2.6. Trojan Horses

A non-virus which tends to be grouped with viruses is
the Trojan horse, an application which contains code which
does not performas the user is led to believe it will. These
type of applications are usually advertised as system
utilities which when invoked actually cause damage to the
conputer systemrather than inprove its performance. Trojan

horses are not within the scope of this work.

2.2.7. Wrns

A wrmis a self—contained, virus—like application.
Unlike a virus, no applications are infected when a worm
replicates. It may be pathogenic in nature. The usual hone
for awrmis within a networked conputer environnment where
replication is followed by a search for additional hosts on
the network. The nost fanmous wormin recent history is the
| nternet Worm whi ch crippled many installations on the
I nternet because of its unusually rapid replication rate
[1,2,3,4,5,6,7,8]. This type of application is al so not

within the scope of this work.

2.3. Targets of Attack
2.3.1. File System
2.3.1.1. Overview
The first and probably the nost conplex type of attack
on a conputer systemis one against the conputer’s file

system This type of attack requires intricate know edge of

the operating systemif the intent is to infect the system

wi t hout rendering the systemconpletely inoperable. The ever
changi ng nature of conputer file systeminpl enentati ons al ong
with the idiosyncrasies of individual conputer systens nake
it unlikely that a virus which attacks the conputer’s file
systemw ||l be witten in such as way as to not cause
uni nt ended danage. There are two broad categories of conputer

file systemattack: nuisance and nalicious.

2.3.1.2. Nuisance |ncursion

The nui sance attack consists of the nodification of the
conputer systemis file structures. This nodification may
include alteration of directory structures (e.g.,
creation/access/nodification dates or iconographic
attachnments). The damage fromthis type of attack is for the
nost part inconsequential. Because this type of attack is
intended to be subtle and non-nalicious, the danage incurred

may take a great deal of tine to discover

2.3.1.3. Malicious Incursion

The other and nore preval ent type of attack on the
conputer file systemis that of malicious incursion. This
type of attack is designed to cause direct danmage to the data
structures which allow the conputer systemto function. The
targets of malicious incursion include file size, file
segnentation |inks, extension, access permssions, etc. The

danmage caused by malicious incursion is often severe. The

| ost or altered data cannot be easily recovered or repaired.
The usual recourse is to treat the entire conputer file
system as corrupt and reload the conputer systemfrom

di stribution nedia and pre-incursion backups.

2.3.2. Data Files

A second possible target for a virus is data files. This
attack may take several forns. The data contained within a
data file may be corrupted (i.e., garbage data may be witten
onto the valid data). The data may be encrypted. It may be
reordered in such a way that renders it unusable. The data
may be hidden el sewhere in the conputer system storage
system

Each of these forns of attack results in the | oss of
access to possibly valuabl e data. Database and spreadsheet
data files are especially sensitive to changes in their
cont ent .

The data encryption attack has been used as a form of
extortion [19]. The virus in this case infornmed the user that
their files had been encrypted and that they would be able to
retrieve the files if they sent a specified amount of noney
to a post office box. Unfortunately for the witers of
viruses, it is very easy to trace such transacti ons.

Al t hough the protection of data files is not the main
focus of the Aardvark computer architecture, an architectura
extension to Aardvark is described in the section on data

file security (see Data File Security page 66).

2.3.3. Application Executables

The final type of attack is against the application
execut abl es resident on the conmputer systens. It is this type
of attack that is primarily responsible for the propagation
of conmputer viruses. The protection of the application
executable is the primary anti—virus service which the
Aardvark conputer architecture provides. This type of attack

will be discussed in detail in the follow ng section.

2.4. Application Executable Infection
2.4.1. Overview

In order to explain the nethods viruses use to infect
application executables, it is necessary to introduce a nodel
of an application executable. In order to reduce the
conpl exity of discussion, a sinplified application executable
nodel will be used within this paper.

Inits nmost sinplified form an application executable
is nerely a single streamof instructions whose execution
begins at the start of the application executable. This type
of application has, however, becone a very rare creature. The
application executabl e nodel which will be used throughout

this thesis is seen in Figure 1.

Segment | Segnent 1 | Segnent 2 .

. Segrent n
Tabl e — —

Figure 1 - Application Executabl e Mdel

The application executable is conposed of a segnent
table and a series of code segnents. The segnent table is a
data structure made up of a set of pointers to the various

code segnents (see Figure 2).

Segment 1 pointer

Segment 2 poi nter

Segnent 3 poi nter

Segnent n poi nter

Segnent 2 ¢
Segnent 3 ¢
Segnent 1 —
Segnent n ¢
Figure 2 -
Poi nt er / Segnent
Rel ati onship

Notice that the segnents are not necessarily stored
sequentially. There is no guarantee that the linker used to

generate the application executable will do so.

11

2.4.2. Methods of Viral Infection

Three primary nethods are used by viruses to instantiate
a virus into an application executable. These net hods
include: tail patching, overwiting and routine repl acenent
(see Figures 3, 4 and 5). O her nethods of instantiation are

vari ations of these [16].

2.4.3. Tail Patching

Tai | patching an application executabl e invol ves
extendi ng the segnment pointer table and addition of new
segnents (see Figure 3 on page 12). The technique is called
tail patching because the viral code is added to the end of
t he application executable to prevent nodification of
internal references created by the conpiler and linker. The
viral code segnent is added to the end of the application
execut abl e, possibly extending its I ength. The segnent table
is extended to allow the inclusion of an additional entry for
the viral code segnent. The viral code segnent is then nade
the entry point for the application executable. In order to
mai ntai n the appearance of normal functionality, the |ast
operation of the viral code segnent is a call to the updated
segnment 1 pointer. This type of infection allows the

application to function normally.

12

Segnent 1 pointer virus pointer
Segrent 2 poi nter Segrent 2 poi nter
Segrrent 3 poi nt er Segment 3 poi nt er

— | Segrent 1 pointer

Segrent n poi nter Segrent n poi nt er
Segnent 2 ¢ Segnent 2 ¢
Segnent 3 ¢ Segrent 3 ¢
Segnent 1 — Segnent 1 ¢

viral code —

Segnent n Segrent n

[unused
Figure 3 - Tail Patching Infection

A tail patch infection is very difficult to detect
unl ess the viral code adds substantial overhead to the
application usually causing a | ong apparent |oad tine.
Stealth is the hallmark of this nethod since many
appl i cati ons nmay becone infected before the virus is
det ect ed.

In some cases, the virus creator attenpts to place the
viral code in the exit path of the application instead of the
entry path. This can present a problemsince there is no
guarantee that any given application executable will have a

single exit path. This type of attack is also know as

13

prependi ng or appending since the viral code is prepended of
appended to the operational sequence of the application.

A conbi nati on of prependi ng and appendi ng may al so be
used. This yields what may be referred to as a shell. The
application is allowed to operate nornally, but both its
instantiation and termnation code are bracketed by viral
code. As nentioned above, problens arise when the application
executabl e has nmultiple exit paths. Should a virus infect an
application executable with multiple exit paths, it is likely
that the application will performin an erratic manner since

the viral termnation code woul d not always execute.

2.4.4. Qverwiting

The nost sinplistic nmethod of viral infectionis to
sinply overwite an application executable (see Figure 4 on
page 14). The initial application segnment pointer is replaced
by the viral code pointer and the initial segnment is replaced
by the viral code segnents. No attenpt is nade to preserve
the infected application executable.

Wth this nmethod, the size of the application executable
remai ns unchanged. Thi s causes virus checking by size
difference to fail. On the down side, infectionis quite

obvi ous when an application executes.

Segrent 1 poi nter

Segrrent 2 poi nt er

virus pointer

Segnent 3 poi nter

Segment 2 poi nt er

Segnent n poi nter

Segnent 3 poi nter

Segment n poi nt er

14

Segnent 2 ¢ viral code —
Segnent 3 4 Segnent 3
Segrment 1 — Segrent 1
Segnent n Segnent n
[unused

Figure 4 - Overwiting Infection

2.4.5. Routine Repl acenent

Routi ne repl acenent is a sophisticated form of
overwiting. Instead of overwiting the initial segnent, an
infrequently used segnent is replaced by the viral code (see
Figure 5 on page 15). The application being infected is
examned to identify an infrequently used routine.
Alternately infection may be Iimted to a particular, well
under st ood application. The viral code will have an effective
detection delay established for it. The application may be
able to function for an extended period before the damage to

it is detected.

15

Segrent 1 poi nter Segrrent 1 poi nter

Segnent 2 poi nter Segnent 2 poi nter

Segnent 3 poi nter Segnent 3 poi nt er

I I I I I I I I

I I I I I I I I

Segmrent n poi nt er Segrent n poi nter
Segnent 2 ¢ Segnent 2 ¢
Segrent 3 ¢ viral code ¢
Segnent 1 — Segnent 1 —
Segnent n — Segnent n —

[unused

Figure 5 - Routine Replacenent I|nfection

2.5. Virus Sel f—protection

One of the latest advances in the area of virus creation
has been stealth. The first viruses were extrenely obvious.
Soon after infection, the user would be well aware of their
presence. This is no |longer the case. Nunerous nechani sns of
infection delay are used in the current generation of
viruses. These range fromsinple reference to the system
cl ock to sophisticated nonitoring of systemresource and

appl i cati on usage.

16

If a virus is detected quickly, it is elimnated just
as quickly. If, however, a virus does not nake its presence
known for a period of tine, there is a nmuch greater
I'ikelihood that the virus will be able to spread to
addi ti onal nedi a and/ or conputer systens.

The | atest generation of viruses conmes equi pped with
anti—viral application detection and bypassing, as well as
viral code encryption to protect thenselves. These techni ques
greatly hanper attenpts to maintain a conputer systemfree
fromunwanted viral code [17].

The specifics of these protection techni ques are not
within the scope of this paper. Detailed explanations of the
various virus self—protection techniques can be found in

Davi d Ferbrache’ s book, A Pathology of Conputer Viruses [15].

2.6. Approaches to Virus Protection
2.6.1. Traditional Approaches
2.6.1.1. Boot—tinme Scanning

The nost time—honored nmethod of dealing with the threat
of conputer viruses is boot—time scanning. This requires a
programthat runs each time the conputer is booted. Once in
execution, this virus checker scans the systemfor any signs
of viruses or viral activity. The anount of functionality
varies greatly fromapplications that nmerely report the
presence of a virus to those that can correct any probl ens

encount er ed.

17

There are always tradeoffs between speed, size and
functionality. Were one application may al ways be present in
the conputer’s nenory, another may run once and exit. The
former woul d by necessity, on nost mcroconputers, be small
to satisfy the requirenments of background tasks. The |atter
need not deal with this constraint.

The problemw th this technique of virus detection is
that it assunes that the virus detection application has not
itself becone the victimof a viral attack. This woul d render
t he virus checking application inactive and | eave the user
with the erroneous inpression that the systemis secure. This
concern is addressed in the section on application

sel f —checki ng (see Application Self-checking page 18).

2.6.1.2. Application Executable Checksunm ng

Currently the nost popul ar idea being discussed in the
virus news group on the Internet is application protection by
checksumm ng. This technique requires that upon installation
a checksum of the application executable be nmade and entered
into a database. Periodically, the checksumis verified to
determne if the applications currently | ogged have been
nodified. If so, the user can be inforned that the system has
been attacked and that it is necessary to performan analysis
of the systemusing a virus scanner and al so rel oad any
af fected applications.

The weakness of this nmethodology is simlar to that of

appl i cation sel f—checki ng. The dat abase and application that

18

performthe verification of the application checksuns are
resident in the nenory systemof the conputer. If a virus is
aware of the presence of such an application, it may infect
regi stered applications and then nodify the correspondi ng

entries in the checksum dat abase.

2.6.1.3. Application Self-checking

An anti—-virus technique that is gaining popularity anong
software publishers is self-checking. The application runs
code which looks at multiple elements of the application
executabl e for congruity to a set of established data. If the
sel f—-check fails, the application reports that it has been
tanpered. For obvi ous reasons, virus detection software
usual |y enploys this type of self—protection.

Applications protected by this technique are nore
difficult to attack. There is concern, however, that these
applications may becone the target of ‘designer viruses’.
These viruses would be witten to attack specific
applications. Creation of this type of virus would require
that the application first be disassenbled to determ ne what,
if any, self-checking code is in place. It is a sinple task
to infect the application and then either nodify the baseline
data or elimnate the self-check code. The fornmer woul d be
sinpl er since the self-check code may be threaded through by
ot her portions of the application to ensure that it is not

tanmpered with.

19

2.6.2. Problens Wth Traditional Approaches

The probleminherent in all the traditional nethods for
virus protection is that they depend on the virus scanni ng or
sel f—checking code to remain itself uncorrupted and capabl e
of detecting viruses or alterations in the systemstate.
Unfortunately, they respond very poorly when new types of
viruses or exotic strains of existing viruses are introduced

into the system

2.6.3. Aardvark’s Approach

Aardvark is designed to assure the integrity of
applications regardl ess of whether or not viruses are present
on the system The approach taken by Aardvark is to assure
the integrity of the application executable by having an
encrypted executable. This encrypted application executabl e
is only decrypted on a segnent-by-segnent basis as it is
| oaded into instruction nenory. This nmenory is available for
reading only by the processor during the actual execution of
instructions. An additional |ayer of protection is provided
by I ogi c which conputes a checksum of the application
executabl e prior to loading. This ensures that there have
been no gross level nodifications attenpted. The SROMi s
protected from abuse through | ogic which validates | owl evel
or hazardous systemcalls. This nethodol ogy effectively
i sol ates any conputer virus which attacks an Aardvark-based

conput er system

20

2.7. Dfficulties in Research

One mght inmagi ne that the subject of conputer viruses
woul d be one like any other. In order to study the subject,
one should be able to go to a library, |ocate the catal og
entries concerned with conputer viruses, both book and
periodical, and retrieve the pertinent information. Foll ow ng
the initial research, one would set up several machi nes and
infect themw th viruses acquired fromvarious sources. The
effects of the viruses on the systens could then be eval uated
and possible solutions tested for effectiveness.

The reality of the situation is that doing any research
in the area of conmputer viruses is very difficult. The
creators of conputer viruses w sh to have their nanes fanous
but not their identities. The conpani es who design virus
detection software do not wish to divulge the techni ques used
by virus witers to prevent woul d-be virus witers from
| earning them For the same reason, sources to deconpiled
viruses cannot be found in any of the source code archives on
the Internet.

Trying to set up a testing facility for virus testing is
like trying to set up a bubonic plague test center. Everyone
acknow edges the val ue of the work and good intentions and
appreciate that plans to take every possible safety
precaution, but they would prefer that you take your “toxic
wast e dunp” to another state, thank you very nuch

One of the greatest roadblocks in virus research is the

parent of the Conputer Security Center, the National Security

21

Agency (NSA). According to a public affairs officer wth the
NSA, “[Conputer viruses are] just one of those things we
don't talk about [9,10].” Fred Cohen of the University of
Cncinnati was told by an NSA enpl oyee that “You re not going
to do any research on viruses if we can help it .” It has
been specul ated that the NSA injected a conputer virus into
the Iraqgi defense systemduring the Gulf War. The NSA has
refused to comment on the story even though it is considered

to be a hoax [5, 11].

3. COVWPUTER ARCH TECTURES
3.1. Conventional Conputer Architecture

Many different strategi es have been used to design
conputer architectures. In the past twenty years, the

industry has settled on one particular architecture for

22

m croconputer design. In this nodel, there is an SROM (System

ROV) or kernel, a contiguous main nmenory, a host of internal
| /O devices (e.g., keyboard, screen, nouse, fixed and
renmovabl e nmedi a) and external 1/0O devices (e.g., printer
ports, serial communications ports, network ports). Al of
these elenents of the architecture provide it with a great
deal of flexibility and configurability in that a stock
machi ne may be ‘stripped down to allow for special purpose
applications or enhanced as newer technol ogi es present

t hensel ves. The portion of the traditional conputer
architecture I will focus onis the CPUto nenory subsystem
The conventional mcroconputer architecture’s CPU to nenory
subsystem (see Figure 6 on page 24) is very straightforward
in both design and inplenentation. Al major operating
systens avail able today treat the entire body of nenory as
free for the application’s use. No distinction is nade

bet ween what is code, what is application stack space and
what is data. A programis unable to determ ne whether the

code being called is in RAMor ROM This is not to say that

applications have free run of the entire address space of the

23

machi ne because, in general, this is sinply not the case. It
nerely points out that checks nust be nmade to insure that
applications do not overrun thensel ves or other applications
i ncluding the operating systemduring the course of
execution. It is while resident in nenory that data is

vul nerabl e. Applications nake the assunption that data
structures nmaintained by themare valid. If a second
application were to corrupt these data structures, the first
woul d be unable to detect any such corruption. Al so, in order
to execute an application, it nust be present in nmenory.
Wiile in this state, checks nust be nade to ensure that an
application does not read another’s code. This nust be done

in order to preserve the security of certain applications.

24

SROM

-

[

]

]

1]

L1

o

&

o

= mai n
nenory
(RAM

B Address Bus
——— Data Bus

Figure 6 - Conventional Conputer
Architecture

3.2. Aardvark’s Conputer Architecture
3.2.1. Description of Aardvark

Aardvark’ s conputer architecture is pictured in Figure 7
on page 25. The termvirus-resistant is used as opposed to
vi rus—proof because | do not believe that it is possible to
have a conpl etely virus—proof conputer systemso |long as the
el enents of the operating environnment (GS, user interface,
etc.) exist in software and not exclusively in firmware and
har dware. Al t hough conplete virus protection may be feasible
i n dedi cated systens such as enbedded m crocontrollers, the
conti nual upgrading required by nost conputer systens nake

this inplenmentation technique highly unlikely.

25

Packr at mai n | oader
Logi c SROM SROM

[

a]

i

bl

o

gy

E..

Yy

.I.J

o
Aar dvar k CIicket Gbpher
Regi st ers | ogi c | ogi c NVRAM

nmenory
Dol phi n separate Ki nkaj ou
| ogi c | & D I ogic
(RAM
s Addr ess Bus
— Data Bus

— Private Bus

Figure 7 - Aardvark’s Conputer Architecture

The chi ef technique used by Aardvark in ensuring the
integrity of the environnent for applications is the use of
application encryption. Every ‘trusted application is stored
in encrypted form Only when the application executable is
| oaded into the conputer systenis active nenory is it
decrypted. This decryption is performed within hardware. For
the encryption is performed on the

addi ti onal security,

26

segnment | evel. For purposes of this work, it wll be
sufficient to refer to application executables using a
sinplified segnent nodel (see Figure 1 on page 9). The actua
mechani smused to acconplish application | oading and
decryption are described in the section on application

execut abl e | oading (see Application Execution page 45).

3.2.2. Description of Subsystens

Aardvark can be viewed as a main processor connected to
a set of subsystens (see Figure 7 page 25). These subsystens
interact to provide virus protection. Each subsystemis naned
for an animal having the attributes of the function perforned
by the subsystem Briefly, the subsystens performthe

foll ow ng functions:

Cri cket gross | evel application checksumm ng

Dol phin application executabl e segnent decryption
Gopher NVRAM access control

Ki nkaj ou Touch—Menory™ i nput contro

Packr at SROM access contr ol

27

4. ARCH TECTURAL ELEMENTS
4.1. Introduction

The intent of Aardvark is to prevent viruses from
spreading within a conputer system This section focuses on
the architectural elenments used to acconplish this. It is not
possible to explain these elenents in isolation in any
satisfactory manner. | have attenpted to present themin a
way which provides the best basis for understandi ng the
overal | operational nmechani sns used within Aardvark. At tines
there will be heavy use of forward references to material in
rel ated sections of the architecture.

In order to protect the integrity of trusted
applications, it is necessary to maintain a set of baseline
data by which the integrity of the application may be
determned. This data is protected by physically separating
it fromdirect access by the conmputer systemthrough the use
of fire walls in the formof highly autononous subsystem

interfaces and related control |ogic.

4.2. Main Processor/ Subsyst em Conmmuni cati on

The mai n processor and subsystens comunicate via a set
of dual —ported bidirectional off—processor registers (see
Figure 8 on page 28). These registers act as buffers between

the main processor and subsystens.

28

Aar dvar k
Regi sters

Subsyst em Subsyst em Subsyst em
A logic B logic Clogic

Leoroprocessor

Em Addr ess Bus

C— Dat a Bus
C— Private Bus

Figure 8 - Main Processor / Subsystem Communi cati on

The mai n processor communi cates via these Aardvark
regi sters using a nenory—nmapped schene. Each subsystem has a
control and data register assigned to it and nonitors its
control register waiting for appropriate control information
to be presented. Upon being strobed, the subsystemthen
executes its designated task. During execution, the subsystem
may pass control and/or data back to the main processor via
the sane control and data registers. This technique is the
sane used wi th nost conventional nenory mapped conputer

subsyst ens.

29

4.3. Non-Vol ati |l e RAM
4.3.1. Purpose

Aardvark uses non-volatile nenory (NVRAM to store the
trusted application baseline data used to verify the
integrity of the application executable. As nentioned in the
section on subsystem comunication, the NVRAMi s protected
fromdirect access by the main processor through buffering

| ogic (see Main Processor/ Subsystem Communi cati on page 27).

4.3.2. NVRAM Layout

The NVRAM (see Figure 9) is an array of entries
conprised of three sections: file signature, file checksum
and encryption key. The file signature is a 32 bit val ue
uni que to each particular application executable. The file
checksumis a 32 bit val ue which represents a checksum of the
entire application executable. The encryption key is a 56 bit
val ue which is used to decrypt each of the segnents of the

appl i cati on execut abl e.

NVRAM si ze appl i cati on count
File Signature 1| File Checksum1 Encryption Key 1
File Signature n| File Checksumn Encryption Key n
—32 pe— 32 e 56 >
[unused

Figure 9 - Non-volatile RAM | ayout

30

4.3.3. NVRAM Har dwar e

The NVRAM coul d be inplenmented using the Dallas
Sem conduct ors DE1645EE NVSRAMs (Non—Vol atile Static Random
Access Menory). These devi ces provide ei ght negabits (8Mx1)
of non-vol atile storage. Their access time of 70nS nakes them

ideally suited for this application

4.3.4. NVRAM Dat a El enents
4.3.4.1. File Signature

Each Aardvark application wuld have its own uni que set
of file signatures. These woul d provi de a mechani sm by which
docunent creation could be tracked. As seen above, the size
of the application file signature value is 32 bits. This size
accommodat es the needs of Aardvark to uniquely identify
applications and also allows for use outside the scope of the
virus-resistant nature of Aardvark.

The application file signature can be seen as a data
structure having three main el enments (see Figure 10). These
el enents are a unique application ID, an application type (or

class) and a bl ock of application configuration data.

Configuration Data Appl i cation Type Application ID

e 8 >t 10 > 14 >

Figure 10 - Application Signature El enents

31

4.3.4.1.1. Application Type

The application type represents the category in which
the application falls. Exanples of possible application type
i nclude: drawi ng (object oriented), painting (pixel
oriented), word processing, telecomunications, spreadsheet,
not ebook, gane, etc. The field is 10 bits wde allow ng for

1024 possi ble types to be assigned.

4.3.4.1.2. Application ID

Each application which has been rel eased by a commerci al
manuf acturer and is deened to be ‘trusted” will have a unique
application identification code. This code is 14 bits in
length allowing for 16,384 possible applications within a

particul ar application type.

4.3.4.1.3. Configuration Data

The configuration data el enent within the application
signature structure is itself a data structure. This
structure is conposed of 8 bit flags which provide
information as to the structure of the application. The

assignnent of these flags is shown in Figure 11 on page 32.

32

7161514131 2])1]0

|— trusted

unused

Figure 11 - Configuration
| Data Bit fields

The specifics of each bit field is discussed in those

sections using them

4.3.4.1.4. File Signature Adm ni stration

The question naturally arises as to howthe list of the
application types and IDs will be assigned and nai nt ai ned.
This task woul d be undertaken by the organi zation for the
Aardvark conputer architecture itself. This nethodol ogy of
application signature adm ni strati on has been denonstrated to
work quite efficiently by Apple Conmputer, Inc. with their
Maci ntosh line of computers. Wien a new application is
created, a file signature is requested and specific file
creator and type (the two elenents of the file signature) may
be requested. Apple Conputer, Inc. then responds with file
creator and type assignnents for the application in question.
This system has been in place at Apple since the inception of
t he Maci ntosh conputer in 1984. In the case of Aardvark-based
conput er system applications, there is no vendor specific
conmponent to the file signature. The vendor woul d need only
specify what type of application they were creating to

receive a file signature for the application.

33

4.3.4.2. Checksum
4.3.4.2.1. Overview

In order to provide a high |level application
verification, there is a hardware verifiable 32-bit checksum
maintained in the NVRAM It is conputed using an al gorithm
i mpl erented in hardware to reduce the |ikelihood of reverse

engi neering and increase speed of checksum conput ati on.

4.3.4.2.2. Qperation

Wien a request is nmade to the conmputer systemto | oad an
application, a checksumof the application executable is
conput ed and conpared with the checksum | oaded into the
NVRAM | f the two values do not match, an error condition is
generated. The user is then infornmed that the application
| oad request could not be conpleted since there was apparent
corruption of the application executable inmage (see

Application Executabl e Checksunm ng page 47).

4.3.4.3. Encryption Key
4.3.4.3.1. Background

Since the trusted application executable is stored in
encrypted form it is necessary to decrypt the individual
obj ects upon loading into nenory during execution. The key
used for decryption of the application executable as well as
the file signature and checksum nust be | oaded into the NVRAM

of the conputer during application installation. Two possible

34

nmet hods exist for loading this data. The first is a fully
automatic data load and is intended for use with trusted
applications. The second is a sem—-autonmatic data | oad. This
section will describe the first nethod. For information on

sem —automati c | oadi ng see Sem —autonati c Key Loadi ng on

page 64.

4. 4. Application Executable Decryption Logic
4.4.1. Introduction

As nentioned in earlier sections, Aardvark encrypts the
segnents of the application executable in order to provide
protection fromviral incursion. The method of encryption

used by Aardvark is the Data Encryption Standard (DES).

4.4.2. Data Encryption Standard
The Data Encryption Standard (DES) is an encryption
nmet hod devel oped by I1BM and the NSA. It was adopted in 1977
by the National Institute of Standards and Technol ogy as the
standard for unclassified U S Governnent applications.
This nethod of encryption is known as a product cipher.
A 56-bit key is used to enci pher 64-bit bl ocks of data
t hrough a series of pernmutation and rebl ocki ng operati ons.
Questions arise as to the security of the encryption
[18]. Neverthel ess DES is considered adequate for medi um
security applications. The only known neans to deci pher
enci phered data without the key is via exhaustive search of

keys. Since the encryption key used for each trusted

35

application is unique, it is unlikely that an exhaustive
search of keys could be performed w thout significant
conput er system performance degradati on. The encryption key
is ensured to be unique through the use of Touch—-Menory™

nodul es (see Touch Menory™ page 35).

4.4.3. DES Hardware

The DES encryption can inplenmented in hardware with the
VLSl Technol ogi es VMDO7 DES Encryption chip. The speed of
enci phering in hardware is 192 negabits per second. The
VMIO7’' s processing speed should ensure that there will be
little to no noticeabl e system degradation as the application
execut abl e segnents pass through the chip and into
instruction nmenory. Another reason to inplenent the
encryption nechanismin hardware is to reduce the |ikelihood
of cracking the encryption key via a software routi ne. The
speed of software inplenentations of DES are 20 kil obits per
second on a personal conputer and 160 kil obits per second on

a VAX [12,13].

4.5. Touch Menory™
4.5.1. Overvi ew
Aardvark uses Dal | as Sem conductor’s DS1192
Touch Menory™to ensure the integrity of the encryption key.
This device is a self-contai ned nodul e whi ch when connect ed

to a receiver transnmts data in a serial stream It contains

36

a 48-bit |aser etched serial nunber and 1024 bits of
non-vol atil e nmenory.

Each Aardvar k—based conputer systemas well as every
trusted application will cone with its own Touch Menory™key.
This ensures that every application wll have a unique
encryption key. For details as to how the application
executable is paired wwth a Touch Menory™key see

Application Encrypti on on page 73.

4.5.2. Touch Menory™|nterface
The Touch Menmory™is interfaced to the NVRAM subsystem
t hrough the Touch Menory™control |ogic (Kinkajou) (see

Figure 12 on page 37).

37

Touch
5 Menory
In
n I nterface
b
£
o]
ny
=
[
[]
d
Ki nkaj ou
Logi ¢ NVRAM

Em Addr ess Bus

C—— Data Bus . ;
Touch BUS wi thin Aardvark registers

C—/ Private Bus

Figure 12 - Kinkajou Interface

When invoked by the installation routines, Kinkajou
reads the data fromthe Touch Menory™via the Touch Menory™
socket on the front panel of the conputer (see Figure 14 on
page 41) and transfers it into the NVRAM updating the

application count if necessary.

4.5.3. Encryption Key Expansion

The unique ID in the Touch Menory™nodule is 48 bits
long. DES requires a key 56 bits in length. In order to
accommodat e the DES key length requirenent, the Touch Menory™
key nmust be extended from48 to 56 bits by extracting bits

fromthe key and replicating themon either end of the key

(see Figure 13).

38

This expansion is inplenmented in the

i nterface between the Touch Menory™and NVSRAM The negati ve

aspect of this nethod is that it nmay conprom se the strength

of the key since the expansion nmethod nmay be reverse

engi neer ed.
|| I ——
7 7 6 6 7 7
I ' i
I 48 :
I 56 |

Figure 13 -

Encrypti on Key Expansion

39

5. APPLI CATI ON LI FE CYCLE
5.1. Introduction

The nost inportant feature of the Aardvark conputer
architecture is to provide a secure environnent for the
execution of applications. This section will explore the life

cycle of applications as they interact with Aardvark.

5.2. Application Installation
5.2.1. Overview

In order to use an application it nust first be
installed on the conputer system In the case of Aardvark,
this process of installation has two separate paths: one for

‘“trusted’ applications and one for non-trusted applications.

5.2.2. Non-trusted Application Installation

In the case of non-trusted applications, the
installation process is exactly as it would be on any
conventional conputer system The application is transferred
fromits distribution nedia into the nenory storage of the
conput er system

To install a non—trusted application as if it were
trusted, the application nust be encrypted (see

Pronoting Applications page 63) and a sem —aut omatic key | oad

performed (see Sem —autonmati c Key Loadi ng page 64). These

40

extensions to the Aardvark conputer architecture allows for a

greater degree of assurance for non-trusted applications.

5.2.3. Trusted Application Installation
5.2.3.1. Introduction

The installation of trusted applications requires
additional steps. The signature, checksum and encryption key

data nmust be | oaded into the NVRAM (see NVRAM Data El enents

page 30). This data is |oaded froma Touch Menory™key (see

Touch—Menory ™ page 35).

5.2.3.2. Installation Hardware Interface
5.2.3.2.1. Front Panel Interface

An Aar dvar k—based conputer system has sone additiona
har dwar e nmounted on the front panel of the conmputer for
interaction with the user (see Figure 14 on page 41). In
addition to the standard reset button and keyboard switch are
a node selector switch and a Touch—-Menory™socket. The
functions of these two itens will be explained as they are

i ntroduced.

41

Reset Unl ocked Nor nal Touch Socket

m © ©

Locked Load

Push Button Key Switch Touch—-Menory ™
Socket

Figure 14 - Aardvark-based Conputer
Front Panel
5.2.3.2.2. Normal/Load Mdde Switch
The installation of trusted applications requires that
the user first reboot the conputer with the ‘Nornmal/Load” key
switch in the ‘Load’ position. This switch controls the SROM
used by the conmputer and wite access to the NVRAM (see

Fi gure 15 on page 42).

42

Normal / Load

Logi c
|—| CE m En
mai n | oader
SROM SROM
-
]
]
il
£
o
=,
]
B VIE -
d
NVRAM

mmm Addr ess Bus
— Data Bus

Figure 15 - Nornmal/Load Switch Interface

It should be noted that the | oader SROMis not subject
to the restrictions inposed by Packrat (see ROV Code
page 59).

The Nornmal /Load switch provides an additional |ayer of
control over the hardware. It prevents any wite access to
the NVRAM The switch is connected to selector |ogic which
when strobed by the processor’s Reset |ine selects between
the normal and | oad SROMs, and di sabl es or enabl es the NVRAM
for witing (see Figure 16 on page 43). This provides a neans
by whi ch the nmachi ne can switch nodes w thout powering down

during node sw tches.

43

Normal / Load
Switch

Reset

Nor nal
Load
Logi c

Toropracessor

to chip and
write enabl es

Figure 16 - Normal / Load Logic

5.2.3.3. Installation User Interface
When an Aardvar k—based conputer systemis booted in | oad
node, the user is presented a sinple nmenu—driven user

interface (see Figure 17 on page 44).

Sel ect an operation to perform Sel ect

Reboot

Load an application
Upgrade an application
Unl oad an appl i cation

Figure 17 - Top Level User Interface

The user then selects the ‘|l oad an application’ option
and is presented with the application installation dial ogue

(see Figure 18).

Insert the first installation diskette and new
appl i cati on Touch—-Mermory™key and then sel ect the
Install button.

Install Cancel

Figure 18 - Installation User Interface

| f the user confirnms the request for installation, the
conputer systeminstalls the application, its associated
configuration files and NVRAM entry. The user nmay then exit
frominstallation node and reboot the conputer systemin

normal node. If the user cancels the request for

44

installation, the top—level interface is again presented (see

45

Figure 17 on page 44). At this point the user may either
select a different application or exit the installation

process entirely, as nentioned above.

5. 3. Application Execution
5.3.1. Overview

When the user requests that the system|oad an
application for execution, a series of checks are nmade to
determ ne whether the application is trusted. If these checks
are passed w thout incident, application execution is allowed
to proceed. This section will detail the verification process

that occurs when an application executable is invoked.

5.3.2. Application Type Checking

Upon a request for application execution, the operating
system passes the file signature associated with the
appl i cation executable and stored in the conputer systenis
directory structure to the off-processor register used by the
application type checking | ogic (CGopher). CGopher is then
i nvoked by strobing its control address (G strobe). The
operating systemthen waits for Gopher to respond. The result
is loaded into the bidirectional CGopher data register
(Gdata) and the strobe is tickled (see Figure 19 on

page 46).

46

mai n
SROM
-
i
1]
1]
L1
[u}
y
=
—
[]
s | G strobe
Copher
G data | ogi c NVRAM
Last
Checksum
mm Address Bus Last Key
—— Data Bus < W thin Aardvark registers

C— Private Bus
Figure 19 - Copher Interface

Gopher searches the NVRAM for an entry that matches the
one passed to it. If one is found, the NVNRAM entries for the
decryption key and checksumare transferred to the
of f—processor registers ‘Last Key' and ‘Last Checksumi
respectively. A positive return code is |oaded into the
bi di rectional Gopher data register, and the strobe is tickled
to let the operating systemknow that the search has been
conpleted. If the application file signature does not natch
any in the NVRAM the ‘Last Key' and ‘Last Checksumi
registers are cleared, a negative return code is |oaded into
the bidirectional Gopher data register and the strobe is

tickl ed.

47

I f a negative response is returned from Gopher, the
application | oader knows that the application is not trusted.
If this is the case, the application will be | oaded w t hout
activating the decryption logic. If a positive response is
returned, the application is assuned to be trusted and

decryption will take place during segnent | oadi ng.

5.3.3. Application Checksumm ng

Once an application has been determned to be trusted,
it nust be checksummed. As nentioned in the earlier section
on NVRAM dat a el enments (see Checksum page 33), an application
checksumis stored in the NVNRAM This gross |evel checksum
provides a rapid, if not totally secure, nethod of assuring,
on a high level, that the application has not been tanpered
with in any bl atant manner.

The checksumis performed by hardware | ogic interfaced
via a strobe/bidirectional interface (Cricket). Cricket is
i nvoked by | oading the bidirectional Cicket data register
(C/data) with the first word of the application executable
and then strobing its initiate address (U strobe) . Cicket
initializes the checksumto a predetermned initialization
val ues and reads the data in Cdata (see Figure 20 on
page 48). Oicket then acknow edges the data and waits for

addi tional data to be sent.

48

mai n
SROM
[
i
]
&
[]
y
=y
]
[
e]
d C/ strobe
Cricket
C data | ogi ¢
Last
Checksum
< wWithin Aardvark registers

s Addr ess Bus
—— Dat a Bus
C— Private Bus

Figure 20 - Cricket Interface

Wien the entire application has been passed to i cket
in this manner, the operating systemsignals that it has
conpleted the loading to Cricket via Cstrobe. Cicket then
conpares the checksumwhich it has conputed agai nst the val ue
in the last checksumdata register. If the two match, a
positive status code is sent back to the operating systemvia
C/ data. Gtherw se, a negative status code is generated and
ret ur ned.

If a negative status code is returned fromCricket, the
user is infornmed that the application executabl e has been

corrupted and should be reloaded. If a positive status code

49

is returned fromCricket, the actual |oading of the

application into nmenory is allowed to begin.

5.3.4. Application Executabl e Loadi ng
5.3.4.1. Overview

Once the application executabl e has been verified as
bei ng trusted and having a valid NVRAM checksum the
operating systemw Il initiate an executable |oad. As
nmentioned earlier, Aardvark’s chief nethod of preventing
application executable viral infection is application
execut abl e segnent encryption (see

Aardvark’s Conputer Architecture page 24). If a non-trusted

application has been requested to be |oaded, it may do so
wi t hout having to pass through the decryption |ogic

(Dol phi n).

5.3.4.2. Non-trusted Segnent Loadi ng

As nentioned above, if a non-trusted application is
bei ng | oaded, the segnents do not pass through Dol phin. They
instead are | oaded directly into instruction nmenory by the

segnent | oader.

5.3.4.3. Trusted Segnent Loadi ng

Bef ore any segnent of a trusted application executable
is loaded into instruction nenory i s passes through Dol phin
for decryption (see Figure 7 on page 25). Once decrypted the

segnent is loaded into instruction nenory. After all the

50

initial |oad segnents of the application executabl e have been

| oaded, the application will then be avail able for execution.

mai n
SROM
-
i
[1]]
1]
L1
[u}
y
=
.
1 u
d
Dol phin i nstruction
| ogi c menory
mmmm Addr ess Bus
C—— Dat a Bus
C— Private Bus
o , Last Key
wi thin Aardvark registers—»

Figure 21 - Dol phin Interface

5.3.5. Segnent Swappi ng

If the need arises for a segnent of an application to be
swapped, the displaced segnent is not swapped out to a high
speed swapping nenory unit but rather overwitten. Any tine a
new segnment is required, it is |oaded fromdisk. This
prevents any access to segnents that are in nmenory in a
decrypted form and strengthens the protection against
nodi fication of in nenory code. The handling of in nenory

segnments is discussed further in the section on separate

51

instruction and data nenory handling (see

Physically Separate | and D page 56).

5.4. Application Deinstallation
5.4.1. Overview

When the user determnes that an application has reached
the end of its useful ness, the user may decide to dei nstal

the old application and replace it with a new one.

5.4.2. Non-trusted Application Deinstallation

The deinstallation of non-trusted applications is
acconplished in the same way as on non—Aardvark conputer
systens. The application is sinply deleted fromthe conputer
system s storage along with any configuration files which may

acconpany it.

5.4.3. Trusted Application Deinstallation
5.4.3.1. Introduction

The deinstallation of a trusted application requires not
only that the application executable and associ at ed
configuration files be renoved fromthe storage of the
conputer systens, but also that the NVRAM entry relating to

t he application be renoved.

52

5.4.3.2. Deinstallation Hardware Interface

To deinstall an application and renove the NVRAM entry,
t he conputer systemnust be in |oad node. This is
acconpli shed by selecting the ‘load” position of the
‘“Normal / Load” switch and rebooting the conputer system (see

Installation Hardware Interface page 40). The user then

instructs that the trusted application, its associated
configuration files and NVRAM entry be renoved fromthe

conputer system (see Deinstallation User Interface page 52).

The conputer system may then be rebooted in normal node.

5.4.3.3. Deinstallation User Interface

Once the conputer systemis booted into | oad node, the
user is presented with the top | evel nmenu-based interface
(see Figure 17 on page 44). The user then selects the
‘deinstall application’” option and is presented with a |ist
of trusted applications fromwhich to choose (see Figure 22

on page 53).

53

Select the application(s) to be deinstalled [peinstall

Cancel

\Wor dPer f ect

Lotus 1-2-3

M crosoft Wrks

Newt on Devel oprent Ki t
Super Pai nt

Adobe || ustrator

Figure 22 - Deinstallation User Interface

Upon choosing one or nore applications to deinstall, a
di al ogue i s presented requesting that each request to

deinstall an application be confirned (see Figure 23).

You have requested to deinstall WrdPerfect. This wll
renove it fromthe conputer system Do you wish to
deinstall this applications?

Dei nst al | Cancel

Figure 23 - Deinstallation Confirmation
D al ogue

If the user confirms the request for deinstallation, the
conputer systemrenoves the NVNRAM entry, its associated
configuration files and finally the application itself. The
user may then exit the deinstallation node and reboot the
conputer systemin normal node. If the user cancels the
request for deinstallation, the main deinstallation dialog is

again presented (see Figure 22). At this point the user may

54

either select a different application or exit the

dei nstal |l ati on process entirely, as mentioned above.

5.5. Application Upgrading
5.5.1. Overview

It is the rare exception in the software industry when
an application never requires upgrading with either bug fixes
or new features. The Aardvark conputer architecture all ows

for this contingency in a straightforward manner.

5.5.2. Non-trusted Application Upgradi ng

A non-trusted application is upgraded on an
Aar dvar k—based conputer systemin the same manner that it
would be if it were on a non—Aardvark—based one. The
appl i cati on executabl e and any pertinent support are renoved
and repl aced with the upgraded versions of the sane (see al so

Non—trusted Application Installation page 39).

5.5.3. Trusted Application Upgradi ng

Trusted applications nust be upgraded through the sane
mechani smused for installation and deinstallation of trusted
applications. The conputer systemis first booted in | oad

node (see Installation Hardware Interface page 40). Next the

user selects the upgrade trusted application option fromthe
top—l evel installation dialogue (see Figure 17 on page 44).
The application upgrade di al ogue then appears (see Figure 24

on page 55).

55

Insert the first upgrade diskette and new application
Touch-Menory™key and then sel ect the Upgrade button.

Upgr ade Cancel

Figure 24 - Upgrade Confirmation D al ogue

The user is instructed to insert the first upgrade
di skette and new application Touch Menory™key. The user may
then select the ‘Upgrade’ button to proceed with the upgrade
process or the ‘Cancel’ button to abort the process. If the
user chooses to proceed, they will be pronpted if additiona
di skettes are required during the upgrade process. Upon
conpl etion of the upgrade process, the user is returned to
the top—level installation dialogue. At this point the user
can reboot the conputer systemin normal node. If the user
selects to cancel, they are returned to the top-Ievel

install ati on di al ogue.

56

6. SYSTEM I NTEGRI TY
6.1. Introduction

Since a conputer systemis not nerely a collection of
har dwar e, steps nust be taken to insure the security of the
code during its execution. As seen earlier, the nodification
of operating systemcode and the corruption of file
structures by accessing of |owlevel SROMcalls represent
serious threats to applications and the operating system

This section of this docunment addresses these areas.

6.2. Code Integrity

It is one thing to protect the distribution of an
application executable fromviral infection and quite another
to ensure that there is no contam nation while it is in
execution. The fornmer is dealt with through the encryption of
t he application executabl e’ s segnments. The latter is handl ed

t hrough the use of several |ayers of protection.

6.2.1. Physically Separate | and D

A lack of menory has traditionally been a problemw thin
the community of conputer users. In the early years of
conputing this was mainly a hardware issue. At first it was
sinply not possible and | ater not cost effective to provide
t he physical nmenory required for |arge prograns and | arge

i n—menory data structures. Additionally, as technol ogy

57

progressed, the definition of what constituted a | arge
pr ogram becane ever bigger.

In order to cope with the unending requirenents for
space, several techniques were devel oped. One of the nost
significant of these was that of executable segnentation and
pagi ng. This provided a nechani smwhich all owed execution of
applications with executables |arger than the physica
address space woul d provide. On the hardware side cane
physi cal |y separate address spaces for the application
execut abl e’ s code (instructions) and the variabl es used by
the application executable (data). This effectively doubl ed
t he address space of the conputer with m ninmal additional
control logic. This nethod of separating the address space
into two physical sections for instructions and data was
called the ‘[physically] separate | and D nodel

As conputer technol ogy matured, techniques were
devel oped which allowed efficient handling of application
execut abl es that required greater address space than the
conputer could provide. The nost well known of these
techniques is virtual nenory managenent. Sinply put “virtua
menory is nenory that you think you have, but don’t.” This
all oned for applications which did not have to use segnented
data spaces, greatly sinplifying the handling of |arge data
structures especially dynamcally created ones.

These advances in address space nanagenent nade

physically separate instruction and data space unnecessary.

58

The conbi nati on of hardware and software nmenory nmanagenent
made it possible to handle nost situations quite gracefully.

Currently nost conputer nenory systens are designed with
a single physical address, referred to as a ‘[physically]

conbined | and D nodel

6.2.2. Application Executable Protection

Aardvark’s Conputer Architecture (see Figure 7 on
page 25) uses the separate | and D nodel. This nmenory
i npl enent ati on nodel was chosen to prevent nodification of
application executables while they were in an unencrypted
state in the active nmenory of the mcroconputer. Unlike the
traditional inplenentation of the nenory separate | and D
nodel , Aardvark does not allow non-segnent | oader witing to
the Instruction address space. Additionally, the Instruction
address space cannot be read from (this includes the ROM
address space [see ROM Code page 59]) except by the
instruction |loader. This greatly inhibits any attenpt to
determ ne the nethod of encryption by conparing encrypted and
unencrypted versions of the sane segnent. This inhibition
factor of Aardvark may be nullified by the optional
encryption extension to the architecture (see Deterrent

page 68 and Encrypting User Applications page 62).

59

6. 3. ROM Code

The ROM code, that code which is resident in the SROM
is called by various applications during the normal operation
of a conputer. In conventional conputer architectures, this
code may be accessed by any application, both in the sense of
subroutine calling and al so of reading the data stored in the
ROMitsel f. The open nature of this type of design allows any
application to access such functions as directory structure
mani pul ati on routines, |low |evel disk routines, etc. Viruses
exploit these operations heavily in order to invade conputer
syst ens.

Aardvark deals with this issue with |ogic which acts as
a checkpoint between the caller of SROMroutines and the SROM
routines (Packrat). The SROMis partitioned into two

addressabl e areas (see Figure 25).

Syst em ROM (SROV)

user system
routi nes routines

Figure 25 - SROM
partitioning

When a call is made to a routine resident in the SROV

ROM that address is hardware verified to determne its

60

origin. If the routine has been designated as a user routine
for general use, the routine is allowed to execute w thout
guestion. If however, the routine has been designated as a
systemroutine, then a check is nmade to verify that the
caller is a user level or another systemlevel ROMroutine
(see Figure 26). If so, the routine is allowed to execute. If
not, an error condition is generated. This error condition
takes the formof an interrupt generated by Packrat which is

addressed by the SROM and reported to the user via an error

di al ogue.
Syst em ROM (SROM
user system
routi nes routines
!
H
I CE i CE
2 j
=,
o) Packr at | ast
;El' | ogi c routine
; addr ess
| FETCH
| NT current
routi ne
addr ess

w thin Aardvark registers

mmmm Addr ess Bus
— Dat a Bus
C— Private Bus

Figure 26 - Packrat Interface

The actual inplenmentation of Packrat is sinple. The

‘last routine address’ is a transparent latch holding the

61

address of the |ast programcounter value. It is |oaded from
anot her transparent latch (current routine address)
containing the current value of the programcounter. Wen an
instruction is accessed, the instruction’s address is put
onto the address bus and an instruction fetch sequence is

i ndicated on the processor’s control lines. The last routine
address latch | oads the value of the current routine address
| atch, and the current routine address |atch | oads the val ue
on the address bus. The current routine address is then
conpared with a the system ROM routine address range and if
it falls outside of that range, the chip enable logic is
asserted. If the current routine address falls within the
range of the system ROMroutines, the |ast routine address is
checked to verify that it falls within the range of the SROM
proper. If it does, the chip enable logic is asserted. If
not, an error is generated in the formof an interrupt.

The Packrat does not need to be separate fromthe
address decoder. It is illustrated in this manner for
clarity. In actual inplenmentation, it would be best to have
the verification logic integrated with the address decoder

| ogic for speed considerations.

62

7. ARCH TECTURAL EXTENSI ONS
7.1. CGeneral Comments

Aardvark is designed to be as open as possible while
provi di ng the maxi mum protection to applications. This
section discusses architectural extensions which may be nade
to the systemto provide additional features which sone users
may consi der useful. It should be noted that any
nodi fications to the architecture may create situations which
conprom se the systens ability to protect the encryption

mechani sm

7.2. Encrypting User Applications
7.2.1. Overview

Aardvark may be extended to allow for the encrypting of
user applications allowing the user to take existing
applications which are not inherently ‘trusted” and pronote
themto such a status.

Since this extension to the architecture woul d nake it
possible for the direct conparison of encrypted and
non—encr ypt ed execut abl e code segnents, a situation is
created in which the encrypting nmechani smof the architecture
may be conprom sed. This is, of course, dependent upon the
encrypti ng nmechani smused. There should be no problemw th
systens such as DES, but other nechanisns for encryption may

be nore susceptible to this type of reverse engineering.

7.2.2. Pronoting Applications

In order to pronote an application to trusted status,

addi ti onal hardware and software need to be introduced to

Aardvark’s architecture. Support

into Cicket, Dol phin and Kinkaj ou nust be added (see

63

l ogic (Ferret) which bridge

Fi gure 27).
| oader
SROM
=
]
n
2
ny
=
o}
LF
i
d
Dol phi n Cricket Ferret Ki nkaj ou
| ogi c | ogi c | ogic | ogi c
B Addr ess Bus
— Data Bus Aar dvark
C— Private Bus Regi sters

Fi gure 27 - Executabl e Encryption Extension

The | oader SROM nust al so be nodified to take an

exi sting application executable and transfer it to diskette

after processing it through Cricket.

Addi tionally,

code nust

be added to the | oader SROMto update the user interface to

i nclude this feature.

64

When an application is pronoted, the user is inforned of
the application signature and checksum This information is
used when the application is installed. As nentioned earlier
the file signature is 32 bits wde. The first bit (bit 0 [see
Figure 11 on page 32]) indicates the type of file signature
(see Table 1).

0 trusted application
1 pronot ed application

Table 1 - File Signature Configuration Bit O
Si nce the operation of application pronotion is handl ed
using the | oader SROM it is possible that the user would
i ke the actual installation to be handled at the tinme of
pronotion. This would require only code bridges between the

pronoti on and sem —automati ¢ key | oadi ng.

7.2.3. Sem —autonmatic Key Loadi ng

The decryption information required by the system cannot
be fully provided by the Touch Menory™key when installing an
application into the system whi ch has been pronoted to the
status of trusted. Wiereas in the case of the fully automatic
| oad, the Touch Menory™key transfers the decryption key,
file signature and file checksum the sem —automatic | oad
requires that the file signature and checksum be entered by
hand during the installation process.

This option would require additional code in the | oader
SROM The additional code would be mninmal as the only change

woul d be the passing of the signature and checksumto the

65

NVRAM par al | el | oader. The hardware nodification required
woul d be sinply the addition of two nmenory—nmapped registers
whi ch woul d be gated into the NVRAM paral | el | oader after the
Touch Menory™data had been | oaded, thereby overriding the

defaul t data.

7.3. Secure Distribution Mdia
7.3.1. Overview

The integrity of an application executable is dependent
upon all the internmediate forns it exists in before it is
install ed on an Aardvar k—based nmachi ne. The weakest link in
the distribution chain is that of the distribution nedia.
Software may be distributed in two ways so as to provide the

hi ghest | evel of confidence in the distribution.

7.3.2. CDROM

The CDROM is very quickly becom ng the nost common and
popul ar form of distribution for |arge software packages.
Capabl e of hol di ng 600MB on unconpressed data, the COROMi s
not sensitive to magnetic fields, requires little space and
nost inportantly, is not subject to nodification. The main

drawback is that the nedia is not recycl able.

66

7.3.3. PCMO A

PCMCI A is a group which has created an international
standard for platformindependent conputer peripherals. These
devi ces include everything fromnenory expansions to cellular
nodens to silicon disks. One type of nmenory expansion is a PC
CARD containing only a ROM As with CDROWs, PC CARD nedi a
cannot be nodified by normal neans (i.e., through software),
but can be recycled if the PC CARDs ROMis actually a
EEPROM In this way, upgrades would not |lead to a constant
accumul ati on PC CARDs and their associ ated Touch Menory™

keys. The ol d key and CARD can be returned for reuse.

7.4. Data File Security

Aardvark may be extended to provide a stronger data file
security. The system SROM nmay have the file handling routine
segregated in such a way as to require that file deletion be
handl ed either by the application which created the data file
or fromthe user interface only. G her applications would be
free to read information fromthese data files but not nodify
or destroy them This would effectively prevent an
application infected with a virus fromattacking data files
present on the conputer system

When a request is nade to open a file for wite or
del ete access, the data file creator 1D woul d be checked
agai nst the current application file signature file ID sub-
field. If the IDs matched, the operation would be allowed to

proceed. If they did not match, the file request woul d be

deni ed and the user would be infornmed via an error dial ogue.

Since non—-trusted applications have no associated file
signature, they would automatically be denied wite and
del et e access.

Thi s mechani sm does not prohibit the free flow of data
within the conputer system It does, however, add the
possi bl e requirenent that the user manually del ete data for

whi ch he/ she does not have the creator application. Since

67

nost data desired for inport wll be in a standard format, it

should require little effort to inport the data with a
resident application and save the data to a file created by

the inporting application.

68

8. SOFTWARE PI RACY
8.1. Summary St at enent

Several questions arise regarding the issue of software
piracy as it relates to ny proposed architecture. | wll

address themin this section.

8. 2. Scope

The scope of this proposed architecture does not deal
with the possibility that ‘trusted distribution nedia have
been tanpered with. If a piece of software has been
‘cracked’, nodified, re-encoded and redistributed there is
little that this architecture can do to hel p. The
architecture will deal with this by preventing the spread of
any virus through the sane neans which it uses to prevent
such a spread when a ‘non-trusted product containing a virus

is introduced to the system

8.3. Deterrent

Aardvark, by its very design, discourages piracy. There
will no doubt be a mnority population in the conputer
community who will see this architecture as yet another
techni cal challenge to surnount. As nentioned in earlier
sections dealing wth the specific inplenentation of the
segnment encoding, it is intended to be very difficult to

decrypt the application prograns | oaded onto a conputer using

69

this architecture. | do not consider this to be a serious
threat to the security of the nmachine. On the contrary,
woul d think that the incidence of trusted application
infection and theft woul d decrease, since there is no way to
retrieve a decryption key froma machine once it has been

| oaded.

If an individual copied a trusted application froma
machi ne based on Aardvark and | oaded onto one not based on
Aardvark, the application would not execute since there would
be no mechanismfor on-the-fly decryption. Simlarly, if the
application were |loaded it onto an Aardvar k—-based nmachine, it
woul d still not run since the decryption key for that
particul ar copy of the application wuld not be present. As
explained in an earlier section, it is not possible to | oad
the encryption key manually or for that nmatter retrieve it to
a human readabl e formw thout highly specialized hardware.
Even if the key were cloned, it would be highly prohibitive
to create and distribute.

Assum ng that both the software and key are stolen, the
owner need only report the loss to the manufacturer. |If any
probl ens arise, the individual would be identified
imedi ately via the software’s serial nunber. There is a high
degree of disincentive toward nmass installation of an
application on a network.

It is also possible to protect a non-trusted application
frompiracy. Any application may be encrypted using the ID

key whi ch woul d cone with each Aardvark-based conputer (see

Encrypting User Applications page 62). Once this has been

acconpl i shed the application may be transferred to diskette

and installed as if it were a trusted application.

70

71

9. Trusted Application Devel opnent
9.1. Introduction

In the creation of any new conputer system let alone a
conpl etely new conputer architecture, the questionis, “Is
there software avail abl e?” The nunerous failed conputer
systens show that the availability of conputer software is a
critical issue. The Aardvark conputer architecture is
designed in such a way that it is very easy to create an

application for it or port an existing application to it.

9.2. Trusting Trust

How can you ensure that the trusted applications created
for a conputer architecture which is highly virus—resistant
are free of viruses? Ken Thonpson addresses this issue of
trust in his 1983 ACM award speech [14].

Basically, the problemis one of trust. It is inpossible
to be 100 percent certain that an application executabl e not
personal |y assenbled is not suspect. The task is to ensure a
hi gh enough | evel of certainty so that there is confidence
t hat application devel opnent tools are free fromviruses and
that the output of these tools are also.

It is presuned that the devel opnent tools used on an
Aar dvar k—based conputer system are thenselves trusted. |f
this assunption is true, then no problens should arise with

any application produced by these devel opnent tools.

72

9.3. Application Creation

In order to create an application which can be run on an
Aar dvar k—based conputer system the nost inportant rule to
followis: Thou shalt not wite sel f-nodifying code. As seen
in the section on physically separate | and D (see

Physically Separate I and D page 56), it is inperative that

application be witten is such a way as to not use this
techni que of coding, since the application executable code is
not accessi ble by the application itself.

A second rule to followis: Thou shalt not inbed data in
code segnents. Since the instruction and data nenory spaces
are physically separate, there is not way to access any data
enbedded within the application code.

Aardvark requires well disciplined and nodul ar
programm ng, both in terns of the code and data structures.
Thi s programm ng phil osophy can already be seen to a | arge
degree in the Apple Macintosh application environment.

Al though there is not hardware support for it, thereis a
clearly defined separation of code and data, and al so a
separation of pure data (akin to flat files) and structured
extensible data (i.e., code and data resources).

As nentioned in the section on file signatures (see

File Signature Adm nistration page 32), the individua

application types and I Ds woul d be assigned by the
organi zation naintaining the Aardvark conputer architecture.
A company woul d need only request a new file signature based

on the application type.

73

9.4. Application Encryption

Once an application has been created for or ported to an
Aar dvar k—based conputer, it is necessary to encrypt the
application executable prior to distribution. This process is

simlar to that explained in the section on application

encryption (see Encrypting User Applications page 62). The
only difference is that, in the production environnent, the
duplication of large quantities of the application would
requi re a nmechanical nmechanismto feed the Touch Menory™keys
to the systemfor programm ng and additional software in the

| oader SROM to handl e such mass duplication

9.5. Application D stribution

D stribution of Aardvark-based conputer application
software is acconplished in the same manner as
non—Aar dvar k—-based software. As seen fromthe section on

application installation (see Application Installation

page 39), the only additional material needed to be packaged
and distributed is the Touch Menory™key. Al other materials

and channels of distribution renain the sane.

74

10. CONCLUSI ONS AND RECOVMENDATI ONS
10. 1. Concl usi ons

The Aardvark architecture is one that addresses the
issue of viral instantiation into application executables.
Its additional protection of |ow level systemroutine
strengthens the protection of the conputer systemas a whol e.
In nost cases this is all that is necessary to prevent the
spread of viruses.

The problem of data file infection is not dealt with
extensively. There is, however, provision within the scope of
the architecture for addition of nmechanisns which woul d
di sal | ow access to data files by all but trusted
applications. This is briefly discussed in the section on
ext ensi ons.

In the final analysis, the effectiveness of this design
proposal cannot be fully evaluated unless a prototype is
constructed. Wen viewed in isolation and together, the
el enents of this architecture |lead to the conclusion that the
architecture is sound and wll indeed act as an effective

deterrent to conputer viruses.

75

10. 2. Recommendat i ons

There is sufficient material presented in this docunent

for Aardvark to be inplemented by a devel opnent teamw thin a
period of 18 nonths. | would recommend that such action be
taken. My reasoning for this is two—fold. First, I would Iike
to see the new concepts in virus—resistant conputer
architecture exploited and put into the public sector.
Second, greater exploration of this type of architecture is
needed. The inplenentation of the architecture would lead to
addi ti onal and possibly nore conprehensive solutions to the
ongoi ng probl em of conputer viruses.

As with the introduction of any new technol ogy, there
wll be alarge initial investnment on the part of those who
decide to pursue this architecture. Al though the hardware
needed to nodi fy an existing m croconputer—based architecture
are mninmal (additional control |ogic, additional SROW,
NVRAM etc.), a paradigmshift will be needed on the part of
both the conputer industry and the conputer user. At the
present it is considered sufficient to periodically scan for
viruses and recover fromthe attacks which occur. The
conputer community must cone to see that if virus—free
environnents are to exist, conputers nust be designed to
withstand viral attacks. This paradigmshift is akin to the
one whi ch occurred regardi ng graphical user interfaces
(QJs). At one time GJs were considered a curiosity. They
are now not only a reality, but a standard feature which we

have cone not only to appreciate but expect.

76

REFERENCES

R 1. CGeneral References

Anderson, lan. “Viral invader spreads havoc in Amrerican

conputers.” New Scientist 120 (12 Novenber 1988): 24.

“Arny to award contract for studying potential of conputer

viruses as electronic counterneasure.” Aviation Wek 132

(14 May 1990): 38.
Barron, Janet. “Two Mac viruses.Byte 14 (June 1989): 278.
“Bewar e of vandal ware.” | EEE Spectrum 28 (February 1991): 66.

“Carleton University H -Tech Update ‘88.” | EEE Conmuni cati ons

27 (May 1989): 74.

Chapman, Gary. “CSPR statenent on the conputer virus.” CACM
32 (June 1989): 699.

Cpra, Barry. “Eternal plague: conputer viruses.” Science 249
(21 Septenber 1990): 1381

“Conputer Viruses 89.” Datamation 35 (1 April 1989): 60-1.

“Cornell issues report on conputer worm” Conputer 22 (June
1989): 99.

Crawford, D ane. “Two bills equal forewarning.” CACM 32 (July
1989): 780-2.

Denni ng, Peter. “Conputer viruses.” Anerican Scientist 76

(May/ June 1988): 236-8.

Denni ng, Peter. “The Internet worm” Anerican Scientist 77

(March/ April 1989): 126-8.

77

Dewdney, A. “Conputer recreations; of worns, viruses and Core

War.” Scientific Arerican 260 (March 1989): 110-3.

D ehl, Stanford. “Rx for safer data.” Byte 16 (August 1991):
218-24+.

Dutton, Gail. “At the edge of chaos: artificial life?”
| EEE Software 9 (January 1992): 88-9.

Ei senberg, Ted. “The Cornell Comm ssion: on Mrris and the
worm” CACM 32 (June 1989): 706-9.
Fai nberg, Tony. “The night the network failed.” New Scienti st

121 (4 March 1989): 38-42.
Farber, David. “NSF poses code of networking ethics.” CACM 32
(June 1989): 688.

Fer brache, David. A Pathol ogy of Conmputer Viruses. London:

Springer—Verl ag, 1992.
Flynn, Jennifer. 20th Century Conputers and How They Wrked.

Carnmel , Indiana: Al pha Books, 1993.
Fox, Barry. “Conputers get stoned on patent discs.”
New Scientist 131 (10 August 1991): 24.

G eenberg, Ross. “Know thy viral eneny.” Byte 14 (June 1989):
275-80.
Hlton, Phil. “IBMfails to squash ‘virus’' scare.”

New Scientist 118 (14 April 1988): 34.

Hrst, Joe. “Rotten to the core: bonbs, Trojans, worns and

viruses.” New Scientist 121 (4 March 1989): 40-1.

Hodges, Parker. “The viral age.” Datanation 34 (1 Decenber
1988): 96.

78

Hol den, Constance, ed. “Rogue AIDS disk alarns researchers.”
Sci ence 247 (5 January 1990): 24.

“How deadly is the conputer virus?” Electrical Wrld 202

(July 1988): 35-6.

Joyce, Edward. “Software viruses: PGC-health eneny nunber
one.” Datamation 34 (15 Cctober 1988): 27-8+.

Kocher, Bryan. “A hygiene | esson.” CACM 32 (January 1989):
3+.

Lef ohn, Allen. “The conputer virus.” JAPCA 38 (Septenber
1988): 1102.

Lerner, Eric. “Conputer virus threatens to becone epidemc.”

Aer ospace Anerica 27 (February 1989): 14-6+.

Marshall, Eliot. “The scourge of conputer viruses.” Science
240 (8 April 1987): 133-4.

Marshall, Eliot. “Wrminvades conputer networks.” Science
242 (11 Novenber 1988): 855-6.

Marshall, Eliot. “The wornis aftermath.” Science 242 (25
Novenber 1988): 1121-2.

McAf ee, John. “The virus cure.” Datamation 35 (15 February
1989): 29-40.

McLean, John. “The specification and nodel i ng of conputer
security.” Conputer 23 (January 1990): 9-16.

Mckle, Marlin. “A holistic response to viruses.” |EEE Mcro
9 (June 1989): 89.

Nordwal |, Bruce. “Rapid spread of virus confirns fears about

danger to conputers.” Aviation Wek 129 (14 Novenber

1988) : 44.

79

Preiss, Ralph. “Position paper on conputer viruses planned.”
Conput er 22 (February 1989): 82.

Rochlis, Jon. “Wth mcroscope and tweezers: the wormfrom
M T s perspective.” CACM 32 (June 1989): 689-98.

Saeed, Faisel. “International Mcroconputer Software Inc.”
Conput er 24 (COctober 1991): 86-7.

Saffo, Paul. “Consensual realities in cyberspace.” CACM 32
(June 1989): 664-5.

Schl ack, Mark. “How to keep viruses off your LAN. " Datamation
37 (15 Cctober 1991): 87-8+.

Seel ey, Donn. “Password cracking: a gane of wits.” CACM 32
(June 1989): 700-3.

Shul man, Seth. “(Artificial) germwarfare.” Technol ogy Revi ew

94 (Cctober 1991): 18-9.

Spafford, Eugene. “Crisis and aftermath (Internet worm.”
CACM 32 (June 1989): 678-87.

“Time bonmb ticks in conputer networks.” New Scientist 124 (21

Cct ober 1989): 26.

Wal drop, M “PARC brings Adam Smth to conputing.” Science
244 (14 April 1989): 145-6.

Wal | ich, Paul. “Hostile takeovers: how can a conputer wel conme

only friendly users?.” Scientific American 260 (January

1989): 22+.
“Wanted: conputer virus antidote.” Design News 44 (19

Decenber 1988): 36.
Watts, Susan. “‘Health canpaign’ needed to beat conputer
virus.” New Scientist 121 (21 January 1989): 26.

Watt s,

Susan.

“Sl oppy software was AIDS disc’s Achilles

heal .” New Scientist 125 (6 January 1990): 34.

80

81

R 2. National Security Agency
Banford, V. Janmes. The Puzzle Pal ace. New York G ty: Penguin

Books, 1983.
Bl ack, Peter. “Soft Kill.” Wred 1 (July/August 1993): 49-50.
“Electric Wrd.” Wred 1 (Septenber/Cctober 1993): 31.
Hol den, Constance, ed. “Viral tall tale?” Science 255 (24
January 1992): 406-7.
Marshall, Eliot. “Wrminvades conputer networks.” Science

242 (11 Novenber 1988): 855-6.

82

R 3. Data Encryption

Banerjee, S.K “H gh speed inplenentation of DES

Conputers and Security 1 (1982): 261-7.

Brassard, Glles. Mdern Cyptography. New York Gty:

Springer—Verl ag, 1988.
Conput er Security. Al exandria: Tine—Li fe Books, 1986.

Denning, Dorothy EE R Cyptography and Data Security.

Readi ng: Addi son-\W\sl ey, 1983.
MacM I lan, D. “Single chip encrypts data at 14My/s”
El ectronics 54 (16 June 1981): 161-5.

Wllians, D. and Hndin, HJ. “Can software do encryption

job?” Electronics 53 (3 July 1980): 102-3.

83

R 4. Virus OGeators
Brunner, John. The Shockwave R der. New York Cty: Harper &

Row, 1975.
Cerrold, David. Wen Harley Was One. Garden G ty: Nel son

Doubl eday, 1972.
Haf ner, Katie and Mar koff, John.

Qutl aws and Hackers on the Conputer Frontier. New York

G ty: Touchstone, 1991.
Ryan, Thomas J. The Adol escence of Pl1. New York Gty:

MacM I i an, 1977.
Shea, Robert and WI son, Robert Anton.
The Illumnatus Trilogy. New York: Dell, 1975.

84

R 5. Conputer Architecture

Stone, Harold S. and Siew orek, Daniel P. Introduction to

Conmputer O gani zation and Data Structures: PDP-11

Edition. New York CGty: MGawH |I, 1975.

Tanenbaum Andrew S. Structured Conputer O gani zation.

Eagl ewood A iffs: Prentice Hall, 1976.
TWVB320C3x Users @ui de. Houston: Texas | nstrunents, 1992.

85

R 6. Gtations

10.

11.
12.

“Cornell issues report on conputer worm” Conputer 22
(June 1989): 99.

Denni ng, Peter. “The Internet worm” Anmerican Scientist 77

(March/ April 1989): 126-8.

Ei senberg, Ted. “The Cornell Comm ssion: on Mrris and the
worm” CACM 32 (June 1989): 706-9.

Fai nberg, Tony. “The night the network failed.”
New Scientist 121 (4 March 1989): 38-42.

Marshal |, Eliot. “Wrminvades conputer networks.” Science
242 (11 Novenber 1988): 855-6.
Marshal |, Eliot. “The wornis aftermath.” Science 242 (25
Novenber 1988): 1121-2.
Rochlis, Jon. “Wth m croscope and tweezers: the wormfrom
M T s perspective.” CACM 32 (June 1989): 689-98.
Spaf ford, Eugene. “Crisis and aftermath (Internet worm.”
CACM 32 (June 1989): 678-87.
Hol den, Constance, ed. “Viral tall tale?” Science 255 (24
January 1992): 406-7.
Bl ack, Peter. “Soft Kill.” Wred 1 (July/August 1993):
49-50.
“Electric Word.” Wred 1 (Septenber/Cctober 1993): 31.
MacM | | an, Dave. “Single chip encrypts data at 14My/s”
El ectronics 54 (16 June 1981): 161-5.

13.

14.

15.

16.

17.

18.

19.

86

W1l lians, Deborah. and H ndin, Harvey J. “Can software do
encryption job?” Electronics 53 (3 July 1980): 102-3.

Thonpson, Ken. “Reflections on trusting trust.” CACM 27
(August 1984): 761-3.

Fer brache, David. A Pathol ogy of Conputer Viruses.

London: Springer-Verl ag, 1992.
---, 31-6.
---, T73-82.
Brassard, G lles. Mdern Cyptography. New York Gty:

Springer—Verl ag, 1988.
Hol den, Constance, ed. “Rogue Al DS di sk alarns
researchers.” Science 247 (5 January 1990): 24.

87

APPENDI X A - EXOTI C HARDWARE DATASHEETS

A. 1. Overview

Thi s appendi x contai ns datasheets for the exotic
hardware required for Aardvark. It is not necessarily the
case that the vendors specified for these conmponents and
subsystens are the only one, but nerely those | have used for

t he basis of the design.

A. 2. DE1645EE NVSRAM

88

A. 3. VMOO7 DES Encrypter/Decrypter

96

115

A. 4. Touch Menory™

124

VI TAE
Charl es Janes Wlson, B.S. C S
PO Box 202287
Austin TX 78720-2287

mai | t o: pat hfi nder @cm org

Prof essi onal Qbjective:

M/ professional objective is to work for a progressive
organi zati on desi gni ng and devel opi ng the human interface
aspects of systens which will allow for |ess threatening,

nore productive end-user systens.

The Dreaners CGuild, Inc. 6/91 - 8/92
Human I nterface Designer / Chief Operating Oficer

The Dreaners @Quild is a privately held conpany focused
primarily on the entertainnment industry working with software
and nusic systens. | consulted on user interface issues of
projects being undertaken by the conpany.

| perfornmed a user interface redesign and restructuring
of the underlying data nodel for a systemwhich interfaced a
Hel | CGWK col or separating scanner to a Maci ntosh (ScanMac).
| also wote the user docunentation for ScanMac.

In February of 1992, | becane the conpany’s chi ef
operating officer responsible for managi ng the conpany’s
i n—progress projects, handling the office equi pnent

managenent, project tinelines and resource allocation.

125

Anbassador Col | ege 8/90 - 5/91
Consul t ant

Anbassador College is a liberal arts college in Big
Sandy, Texas. Wi le there, | lent ny skills to their conputer
servi ces departnent and advised them on issues of networKking,
har dwar e support and equi prent acquisition. | specified the
requirenents for the their conmputer repair facility and

severe electrical stormprotection.

Tri—-Data Systens, Inc. 4/ 89 - 8/90
User Interface Designer

Tri—-Data Systens, Inc. (later acquired by Avatar) is a
t el ecomuni cati ons conpany whi ch produces m croconputer to
| BM mai nfranme gateways and an | BM 3270 term nal enul ator.

| redesigned and re-inplenented the conpany’s | BM 3270
term nal programw th special attention being given to the
user interface. | added an interface to allow for |BM 3270
function keys to be mapped to the keyboard at the user’s
discretion. | also created a nulti—programmrer/nulti—-conputer
devel opnent environment platfornmed on the MPW environnment
allowing for structured hierarchical projects, prograns and
the overriding of both Iibraries and include files.

Additionally, | provided internal Macintosh technical
support for MPW C, hardware and general Maci ntosh operating
systemissues. Finally, | provide typographic, |ayout and

copy editing support to the marketing departnent.

126

Qubi x Graphic Systens, Inc. 5/ 87 - 4/89
Sof t war e Engi neer

The Leonardo, is a high—-end technical illustration
system platformed on Sun M crosystens conputers with a
proprietary user interface. | created a utility to take very
|l ow resolution Kanji raster fonts and produce high resol ution
vector representations for use with Leonardo. | rewote the
conpany’s vector font editor to allow for use with the
mul ti —megabyte Kanji fonts. | redesigned the interface of the
Leonardo product creating a set of interface guidelines which
enabl ed the streamining of the product for its use with a
standard Sun nonitor. | then designed and devel oped the user
interface for the Maci ntosh version of the Leonardo worKking

with the engi neering and nmarketing departnents.

Vol t I nformation Sciences/ Autol ogi c 7/ 85 - 5/87
Syst em Manager/ Sof t war e Engi neer

Volt Information Sciences designed a conpletely
integrated el ectronic publishing systemfor the Arny. | acted
as LAN adm ni strator and systens nanager

Aut ol ogi ¢ produces a text conposition software package
call ed M croConmposer™ | devel oped M croConposer’s raster
graphics editor. | also devel oped an inplenentation of the
Kermt protocol for the Convergent Technol ogi es NGEN
Addi tionally, | provided hardware and software interna

t echni cal support.

127

Ceneral Electric Conpany 3/84 - 6/85
Scientific Applications Programrer

Wil e awaiting ny security clearance | worked with Data
Systens Resource Managenent, the research armof GE Space
Systens, where | conducted a study of |aser printer usability
with the Convergent Technol ogi es NGEN and provi ded internal
CTCS system and Convergent hardware support. | al so
redesi gned and ported a PDL anal ysis programfromthe VAX to

t he Convergent Technol ogi es MegaFrame and NGEN. Fol | ow ng ny

cl earance, | programmed scientific applications in FORTRAN on
an | BM 370.
appl i ed conputing devices, inc. sunmer / 83
Pr ogr ammer

| devel oped the user interface of a tel ecomsystemon an
| BM Series 1 running under CPI X, a UNI X-li ke operating
system | al so designed and devel oped a source code

managenent system under the Bourne shell.

Exper Canp sumer/ 81- 82
| nst ruct or

Conputer Canp, Inc. (now ExperCanp, a division of
ExperTel |l igence, Inc.). was the first commercial conputer
instruction canp for seven to seventeen year olds. I was both
canp counsel or and conputer |anguage class instructor,

teaching BASIC, LOGO assenbler, and FORTH.

128

Rose—Hul man I nstitute of Technol ogy 9/80 - 6/84
G ader/ Teachi ng Assi st ant/ Syst em Manager

| graded honmework for the FORTRAN, C, and APL | anguage
classes. | was also the teaching assistant for the FORTRAN
| anguage cl asses. Additionally, | was the Conputer Science

Departnment’ s systens nanager.

