
AARDVARK:

A HIGHLY VIRUS–RESISTANT COMPUTER ARCHITECTURE

A Thesis

Submitted to the Faculty

of

Rose–Hulman Institute of Technology

by

Charles James Wilson

In Partial Fulfillment of the

Requirements for the Degree

of

Master of Science in Electrical Engineering

November 1993

Copyright © 1993-1999 Charles James Wilson

All Rights Reserved

No part of this publication may be reproduced, stored in a
retrieval system, or transmitted in any form or by any
means—electronic, mechanical, recording, or otherwise—without
the prior permission of the author.

Dallas Semiconductor datasheets courtesy of Dallas
Semiconductor, Inc.

VLSI Technology datasheets courtesy of VLSI Technology, Inc.

All trademarks are registered by their respective owners.

March 1999

Second Printing, with revisions

Printed in the United States of America

ABSTRACT

Wilson, Charles James, Rose–Hulman Institute of Technology,
November 1993. Aardvark: A Highly Virus-Resistant Computer
Architecture. Major Professor: Bruce A. Black.

Aardvark is a highly virus–resistant computer

architecture based on existing technologies. The

virus–resistant nature stems from the use complementary

mechanisms: dual level system routines in ROM (split SROM),

physically separate instruction and data spaces (separate I

and D) and executable image encryption. These three

mechanisms protect the computer system from low level

operating system routines that circumvent high level security

schemes by accessing the computer system’s drivers directly,

modification of in–memory executables and modification of

non–loaded executable images respectively.

Dedicated to the people who believed more in me than I

did in myself, especially my father whose encouragement meant

more than I could have ever possibly expressed.

v

ACKNOWLEDGEMENTS

You do not just wake up one morning and decide, “I feel

brilliant today; I think I’ll write a master's thesis on

virus–resistant computer architectures.” My father encouraged

me even when I was destroying things around the house to

realize my designs. Darrel Criss and Mike Atkins challenged

my mind during my undergraduate studies. Wilford Stratton,

Donald Morin and Alfred Schmidt listened to and encouraged my

ideas for enhancing man’s ability to utilize technology.

Emmett Black taught me how to deal with corporate types at

General Electric Space Systems. David Wise showed me what it

meant to be a debugging expert. Frank Young thought a thesis

on computer virus protection would be a pretty neat idea.

Philip Fowler believed that I could do it.

Charles James Wilson

Rose–Hulman Institute of Technology

November 1993

vi

 PREFACE

Because of the complex nature of computer viruses and

the complex way in which they interact with computer systems,

the solution is not simply explained. Many times in this

document it is necessary to refer to elements of Aardvark

which have not yet been introduced. Also, since Aardvark by

necessity deals with a software and operating system issue

with a hardware–based solution, the reader is assumed to be

comfortable with this kind of approach. The ideal reader is

one who has a knowledge of computer virus pathology, is

highly conversant with computer architecture and has a firm

grasp of computer system software design. Realizing that this

is not a likely combination of knowledge bases, I have

attempted to explain those concepts which may be unfamiliar

to some readers. In order to aid the reader further, there is

an extensive section of references separated into groups

following the main body of the text.

vii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS v

PREFACE . vi

LIST OF TABLES . xi

LIST OF FIGURES . xii

GLOSSARY . xiv

1. INTRODUCTION . 1
1.1. Statement of the Problem 1
1.2. Importance of the Problem 1
1.3. Purpose of Aardvark 2
1.4. What Aardvark Will Not Do 3

2. BACKGROUND MATERIAL 4
2.1. Summary Statement 4
2.2. Nomenclature 4
2.2.1. Overview 4
2.2.2. Trusted and Non–trusted Applications 4
2.2.3. Propagation 5
2.2.4. Pathogenesis 5
2.2.5. Carriers 5
2.2.6. Trojan Horses 6
2.2.7. Worms 6
2.3. Targets of Attack 6
2.3.1. File System 6
2.3.1.1. Overview 6
2.3.1.2. Nuisance Incursion 7
2.3.1.3. Malicious Incursion 7
2.3.2. Data Files 8
2.3.3. Application Executables 9
2.4. Application Executable Infection 9
2.4.1. Overview 9
2.4.2. Methods of Viral Infection 11
2.4.3. Tail Patching 11
2.4.4. Overwriting 13
2.4.5. Routine Replacement 14
2.5. Virus Self–protection 15
2.6. Approaches to Virus Protection 16
2.6.1. Traditional Approaches 16
2.6.1.1. Boot–time Scanning 16
2.6.1.2. Application Executable Checksumming . . . 17
2.6.1.3. Application Self–checking 18
2.6.2. Problems With Traditional Approaches 19
2.6.3. Aardvark’s Approach 19
2.7. Difficulties in Research 20

viii

3. COMPUTER ARCHITECTURES 22
3.1. Conventional Computer Architecture 22
3.2. Aardvark’s Computer Architecture 24
3.2.1. Description of Aardvark 24

4. ARCHITECTURAL ELEMENTS 27
4.1. Introduction 27
4.2. Main Processor/Subsystem Communication 27
4.3. Non–Volatile RAM 29
4.3.1. Purpose 29
4.3.2. NVRAM Layout 29
4.3.3. NVRAM Hardware 30
4.3.4. NVRAM Data Elements 30
4.3.4.1. File Signature 30
4.3.4.1.1. Application Type 31
4.3.4.1.2. Application ID 31
4.3.4.1.3. Configuration Data 31
4.3.4.1.4. File Signature Administration 32
4.3.4.2. Checksum 33
4.3.4.2.1. Overview 33
4.3.4.2.2. Operation 33
4.3.4.3. Encryption Key 33
4.3.4.3.1. Background 33
4.4. Application Executable Decryption Logic . . . 34
4.4.1. Introduction 34
4.4.2. Data Encryption Standard 34
4.4.3. DES Hardware 35
4.5. Touch Memory™ 35
4.5.1. Overview 35
4.5.2. Touch Memory™ Interface 36
4.5.3. Encryption Key Expansion 37

5. APPLICATION LIFE CYCLE 39
5.1. Introduction 39
5.2. Application Installation 39
5.2.1. Overview 39
5.2.2. Non–trusted Application Installation 39
5.2.3. Trusted Application Installation 40
5.2.3.1. Introduction 40
5.2.3.2. Installation Hardware Interface 40
5.2.3.2.1. Front Panel Interface 40
5.2.3.2.2. Normal/Load Mode Switch 41
5.2.3.3. Installation User Interface 43
5.3. Application Execution 45
5.3.1. Overview 45
5.3.2. Application Type Checking 45
5.3.3. Application Checksumming 47
5.3.4. Application Executable Loading 49
5.3.4.1. Overview 49
5.3.4.2. Non–trusted Segment Loading 49
5.3.4.3. Trusted Segment Loading 49
5.3.5. Segment Swapping 50
5.4. Application Deinstallation 51

ix

5.4.1. Overview 51
5.4.2. Non–trusted Application Deinstallation . . . 51
5.4.3. Trusted Application Deinstallation 51
5.4.3.1. Introduction 51
5.4.3.2. Deinstallation Hardware Interface 52
5.4.3.3. Deinstallation User Interface 52
5.5. Application Upgrading 54
5.5.1. Overview 54
5.5.2. Non–trusted Application Upgrading 54
5.5.3. Trusted Application Upgrading 54

6. SYSTEM INTEGRITY 56
6.1. Introduction 56
6.2. Code Integrity 56
6.2.1. Physically Separate I and D 56
6.2.2. Application Executable Protection 58
6.3. ROM Code 59

7. ARCHITECTURAL EXTENSIONS 62
7.1. General Comments 62
7.2. Encrypting User Applications 62
7.2.1. Overview 62
7.2.2. Promoting Applications 63
7.2.3. Semi–automatic Key Loading 64
7.3. Secure Distribution Media 65
7.3.1. Overview 65
7.3.2. CDROM 65
7.3.3. PCMCIA 66
7.4. Data File Security 66

8. SOFTWARE PIRACY 68
8.1. Summary Statement 68
8.2. Scope . 68

9. Trusted Application Development 71
9.1. Introduction 71
9.2. Trusting Trust 71
9.3. Application Creation 72
9.4. Application Encryption 73
9.5. Application Distribution 73

10. CONCLUSIONS AND RECOMMENDATIONS 74
10.1. Conclusions 74
10.2. Recommendations 75

REFERENCES . 76
R.1. General References 76
R.2. National Security Agency 81
R.3. Data Encryption 82
R.4. Virus Creators 83
R.5. Computer Architecture 84
R.6. Citations 85

x

APPENDIX A - EXOTIC HARDWARE DATA SHEETS 87
A.1. Overview 87
A.2. DE1645EE NVSRAM 88
A.3. VM007 DES Encrypter/Decrypter 96
A.4. Touch Memory™ 115

VITAE . 124

xi

LIST OF TABLES

Table 1 - File Signature Configuration Bit 0 64

xii

LIST OF FIGURES

Figure 1 - Application Executable Model 9

Figure 2 - Pointer/Segment Relationship 10

Figure 3 - Tail Patching Infection 12

Figure 4 - Overwriting Infection 14

Figure 5 - Routine Replacement Infection 15

Figure 6 - Conventional Computer Architecture 24

Figure 7 - Aardvark’s Computer Architecture 25

Figure 8 - Main Processor / Subsystem Communication . . 28

Figure 9 - Non-volatile RAM layout 29

Figure 10 - Application Signature Elements 30

Figure 11 - Configuration Data Bit fields 32

Figure 12 - Kinkajou Interface 37

Figure 13 - Encryption Key Expansion 38

Figure 14 - Aardvark-based Computer Front Panel 41

Figure 15 - Normal/Load Switch Interface 42

Figure 16 - Normal / Load Logic 43

Figure 17 - Top Level User Interface 44

Figure 18 - Installation User Interface 44

Figure 19 - Gopher Interface 46

Figure 20 - Cricket Interface 48

Figure 21 - Dolphin Interface 50

Figure 22 - Deinstallation User Interface 53

Figure 23 - Deinstallation Confirmation Dialogue . . . 53

Figure 24 - Upgrade Confirmation Dialogue 55

Figure 25 - SROM partitioning 59

xiii

Figure 26 - Packrat Interface 60

Figure 27 - Executable Encryption Extension 63

xiv

GLOSSARY

Aardvark - A pseudo–acronym for A Highly Virus–resistant

Computer Architecture (AHVRCA).

appending - A method of viral infection in which viral code

is appended to the end of an application’s exit

sequence code.

Cricket - The checksumming logic within an Aardvark–based

computer.

Data Encryption Standard - An NSA supported standard for the

encryption of computer data.

DES (see Data Encryption Standard)

designer virus - A type of virus tailored to attack a

specific application.

Dolphin - The decryption logic within an Aardvark–based

computer.

Gopher - The NVRAM lookup logic within an Aardvark–based

computer.

Kinkajou - The Touch Memory™ interface logic within an

Aardvark–based computer.

National Security Agency (NSA)- An agency of the federal

government responsible for the communications security

of the United States and is highly concerned with the

use of cryptologic techniques as used in

communication.

NSA (see National Security Agency)

xv

NVRAM - Non–Volatile Random Access Memory. Memory which is

not subject to loss of data when external power is

removed. This is accomplished through the use of an

internal battery and circuitry which detects the loss

of external power.

NVSRAM - Non–Volatile Static Random Access Memory. NVRAM

which is in the static memory class.

overwriting - A method of viral infection accomplished by

completely overwriting the existing code segments with

no attempt made to preserve the original application

functionality.

PCMCIA (see Personal Computer Memory Card International

Association)

Personal Computer Memory Card International Association -

(alternately: People Can’t Manage Creating

Intelligible Acronyms). A 300 member consortium of

computer manufacturers acting as a standards body and

trade organization to develop and promote small

form–factor personal computer devices. PCMCIA may be

used to refer to a device interface or the device

itself (c.f. SCSI).

prepending - A method of viral infection in which virus code

is prepended to the beginning of the execution

sequence of an application.

routine replacement - A method of viral infection in which

the virus replaces the application’s routines with its

own.

xvi

shell - A method of viral infection in which viral code is

both prepended and appended to the application’s code.

SROM - System ROM. System routines stored in Read-Only Memory

used to store large collections of common subroutines.

On IBM PC–based systems the SROM is referred to as the

BIOS (Basic Input/Output System).

tail-patching - A method of viral infection in which viral

code is appended to the end of an application’s code.

Touch Memory™ - A trademarked serial data stream delivery

system developed by Dallas Semiconductor for use in

hostile environments.

Trojan Horse - A hostile application disguised as a harmless

one.

Worm - A self–contained application, usually found within

computer networks, which has the operational features

of a computer virus but does not infect other

applications in its replication process.

1

1. INTRODUCTION

1.1. Statement of the Problem

Since the advent of the computer, individuals have

created programs designed to gain access to data to which

they would not normally have access to and possibly damage or

destroy this data. The reasons for this type of activity

range from curiosity to revenge to espionage.

1.2. Importance of the Problem

Any loss of data or resource control (e.g., when a

computer system is overwhelmed by a parasitic program that

has instantiated itself and is consuming most or all of the

processing capabilities) is almost always costly to the owner

of a computer system. This cost includes time lost to

removing a detected virus from the system and the associated

scanning of tape backups to assure their integrity, time lost

in data restoration or in some cases reconstruction,

processing time lost to virus detection software and time and

money needed to restore or replace faulty software. Any

advances in the area of computer system design which address

this area would produce considerable savings.

2

1.3. Purpose of Aardvark

Aardvark is a computer architecture designed to be

highly virus–resistant. It is intended to protect the

integrity of application executables throughout their

lifetime, from installation, through execution(s) until their

final deinstallation. Since the main mechanism of viral

propagation is through the instantiation of viral code into

other application executables, this effectively prevents the

spread of viruses within the computer system.

Additionally, the architecture provides for a dual level

interface to the system routines in ROM (SROM). The interface

is set up in such a way as to prevent applications currently

in execution from directly accessing low level driver

routines. This protects the computer system from attacks

which use these low level routines to do damage.

Upon detection of an attempted viral attack, the

computer system informs the user that such an attack is

taking place or has taken place. Further, the computer system

instructs the user as to what action may be taken to

eliminate the threat posed.

The design of Aardvark also allows for higher confidence

in data files created by 'trusted' applications. Data files

created by these trusted applications may only be modified by

their creator. Other applications would be allowed read only

access to the files.

3

1.4. What Aardvark Will Not Do

Aardvark is designed to deal with the spread of viruses

to other applications. It does not prevent a virus from being

introduced into the computer system, but rather prevents any

virus which has been introduced through an non–trusted

application from spreading. If a virus is introduced into an

Aardvark–based computer system there is still the possibility

that it may damage non–trusted application executables or

data files.

4

2. BACKGROUND MATERIAL

2.1. Summary Statement

To properly evaluate the solution proposed in this

paper, it is necessary to understand the techniques employed

by virus programs.

2.2. Nomenclature

2.2.1. Overview

Computer viruses have evolved from simple programs which

were crude in both their method of attack and their internal

design into sophisticated programs capable of performing

highly intricate operations on the file system and user files

within a computer system. Some elude virus scanners and may

even infect applications being used to detect and eliminate

viruses. It is important to establish some parameters with

which to bound what will be considered a computer virus

within the scope of this work.

2.2.2. Trusted and Non–trusted Applications

Throughout this work there will be constant references

to ‘trusted’ and ‘non–trusted’ applications. Within the scope

of this work a trusted application shall be one whose

application executable has been verified to contain no

viruses and has been protected using the mechanisms provided

5

by Aardvark. A non-trusted application is one that does not

have both of these attributes.

2.2.3. Propagation

One of the most prominent features of a computer virus

is propagation. The faster a virus spreads into other

applications the more quickly it tends to be detected. Some

viruses target specific application executables, such as

system applications, so that they may spread quickly. Others

wait until an infected application executable is moved onto

another computer system.

2.2.4. Pathogenesis

A computer virus may be pathogenic in nature. Some

viruses merely announce that they are present within an

application in order to bring attention to the author of the

virus. Others are designed to destroy data or applications.

Unfortunately, viruses designed to attack a computer’s file

system may inadvertently damage data structures which were

not the target of the viral attack.

2.2.5. Carriers

Some computer viruses make use of carriers in their

propagation. These carrier applications are infected with the

virus, but the virus will not become active or be spread

further until placed into a suitable environment.

6

2.2.6. Trojan Horses

A non–virus which tends to be grouped with viruses is

the Trojan horse, an application which contains code which

does not perform as the user is led to believe it will. These

type of applications are usually advertised as system

utilities which when invoked actually cause damage to the

computer system rather than improve its performance. Trojan

horses are not within the scope of this work.

2.2.7. Worms

A worm is a self–contained, virus–like application.

Unlike a virus, no applications are infected when a worm

replicates. It may be pathogenic in nature. The usual home

for a worm is within a networked computer environment where

replication is followed by a search for additional hosts on

the network. The most famous worm in recent history is the

Internet Worm which crippled many installations on the

Internet because of its unusually rapid replication rate

[1,2,3,4,5,6,7,8]. This type of application is also not

within the scope of this work.

2.3. Targets of Attack

2.3.1. File System

2.3.1.1. Overview

The first and probably the most complex type of attack

on a computer system is one against the computer’s file

system. This type of attack requires intricate knowledge of

7

the operating system if the intent is to infect the system

without rendering the system completely inoperable. The ever

changing nature of computer file system implementations along

with the idiosyncrasies of individual computer systems make

it unlikely that a virus which attacks the computer’s file

system will be written in such as way as to not cause

unintended damage. There are two broad categories of computer

file system attack: nuisance and malicious.

2.3.1.2. Nuisance Incursion

The nuisance attack consists of the modification of the

computer system’s file structures. This modification may

include alteration of directory structures (e.g.,

creation/access/modification dates or iconographic

attachments). The damage from this type of attack is for the

most part inconsequential. Because this type of attack is

intended to be subtle and non-malicious, the damage incurred

may take a great deal of time to discover.

2.3.1.3. Malicious Incursion

The other and more prevalent type of attack on the

computer file system is that of malicious incursion. This

type of attack is designed to cause direct damage to the data

structures which allow the computer system to function. The

targets of malicious incursion include file size, file

segmentation links, extension, access permissions, etc. The

damage caused by malicious incursion is often severe. The

8

lost or altered data cannot be easily recovered or repaired.

The usual recourse is to treat the entire computer file

system as corrupt and reload the computer system from

distribution media and pre-incursion backups.

2.3.2. Data Files

A second possible target for a virus is data files. This

attack may take several forms. The data contained within a

data file may be corrupted (i.e., garbage data may be written

onto the valid data). The data may be encrypted. It may be

reordered in such a way that renders it unusable. The data

may be hidden elsewhere in the computer system storage

system.

Each of these forms of attack results in the loss of

access to possibly valuable data. Database and spreadsheet

data files are especially sensitive to changes in their

content.

The data encryption attack has been used as a form of

extortion [19]. The virus in this case informed the user that

their files had been encrypted and that they would be able to

retrieve the files if they sent a specified amount of money

to a post office box. Unfortunately for the writers of

viruses, it is very easy to trace such transactions.

Although the protection of data files is not the main

focus of the Aardvark computer architecture, an architectural

extension to Aardvark is described in the section on data

file security (see Data File Security page 66).

9

2.3.3. Application Executables

The final type of attack is against the application

executables resident on the computer systems. It is this type

of attack that is primarily responsible for the propagation

of computer viruses. The protection of the application

executable is the primary anti–virus service which the

Aardvark computer architecture provides. This type of attack

will be discussed in detail in the following section.

2.4. Application Executable Infection

2.4.1. Overview

In order to explain the methods viruses use to infect

application executables, it is necessary to introduce a model

of an application executable. In order to reduce the

complexity of discussion, a simplified application executable

model will be used within this paper.

In its most simplified form, an application executable

is merely a single stream of instructions whose execution

begins at the start of the application executable. This type

of application has, however, become a very rare creature. The

application executable model which will be used throughout

this thesis is seen in Figure 1.

Segment
Table

Segment 1 Segment 2 Segment n

Figure 1 - Application Executable Model

10

The application executable is composed of a segment

table and a series of code segments. The segment table is a

data structure made up of a set of pointers to the various

code segments (see Figure 2).

Segment 1 pointer

Segment 2 pointer

Segment 3 pointer

Segment n pointer

Segment 3

Segment 2

Segment 1

Segment n

Figure 2 -
Pointer/Segment
Relationship

Notice that the segments are not necessarily stored

sequentially. There is no guarantee that the linker used to

generate the application executable will do so.

11

2.4.2. Methods of Viral Infection

Three primary methods are used by viruses to instantiate

a virus into an application executable. These methods

include: tail patching, overwriting and routine replacement

(see Figures 3, 4 and 5). Other methods of instantiation are

variations of these [16].

2.4.3. Tail Patching

Tail patching an application executable involves

extending the segment pointer table and addition of new

segments (see Figure 3 on page 12). The technique is called

tail patching because the viral code is added to the end of

the application executable to prevent modification of

internal references created by the compiler and linker. The

viral code segment is added to the end of the application

executable, possibly extending its length. The segment table

is extended to allow the inclusion of an additional entry for

the viral code segment. The viral code segment is then made

the entry point for the application executable. In order to

maintain the appearance of normal functionality, the last

operation of the viral code segment is a call to the updated

segment 1 pointer. This type of infection allows the

application to function normally.

12

unused

Segment 1 pointer

Segment 1 pointer

Segment 2 pointer

Segment 3 pointer

Segment n pointer

Segment 3

Segment 2

Segment 1

Segment n

virus pointer

Segment 2 pointer

Segment 3 pointer

Segment n pointer

Segment 3

Segment 2

Segment 1

Segment n

viral code

Figure 3 - Tail Patching Infection

A tail patch infection is very difficult to detect

unless the viral code adds substantial overhead to the

application usually causing a long apparent load time.

Stealth is the hallmark of this method since many

applications may become infected before the virus is

detected.

In some cases, the virus creator attempts to place the

viral code in the exit path of the application instead of the

entry path. This can present a problem since there is no

guarantee that any given application executable will have a

single exit path. This type of attack is also know as

13

prepending or appending since the viral code is prepended of

appended to the operational sequence of the application.

A combination of prepending and appending may also be

used. This yields what may be referred to as a shell. The

application is allowed to operate normally, but both its

instantiation and termination code are bracketed by viral

code. As mentioned above, problems arise when the application

executable has multiple exit paths. Should a virus infect an

application executable with multiple exit paths, it is likely

that the application will perform in an erratic manner since

the viral termination code would not always execute.

2.4.4. Overwriting

The most simplistic method of viral infection is to

simply overwrite an application executable (see Figure 4 on

page 14). The initial application segment pointer is replaced

by the viral code pointer and the initial segment is replaced

by the viral code segments. No attempt is made to preserve

the infected application executable.

With this method, the size of the application executable

remains unchanged. This causes virus checking by size

difference to fail. On the down side, infection is quite

obvious when an application executes.

14

unused

Segment 1 pointer

Segment 2 pointer

Segment 3 pointer

Segment n pointer

Segment 3

Segment 2

Segment 1

Segment n

virus pointer

Segment 2 pointer

Segment 3 pointer

Segment n pointer

Segment 3

Segment1

Segment n

viral code

Figure 4 - Overwriting Infection

2.4.5. Routine Replacement

Routine replacement is a sophisticated form of

overwriting. Instead of overwriting the initial segment, an

infrequently used segment is replaced by the viral code (see

Figure 5 on page 15). The application being infected is

examined to identify an infrequently used routine.

Alternately infection may be limited to a particular, well

understood application. The viral code will have an effective

detection delay established for it. The application may be

able to function for an extended period before the damage to

it is detected.

15

unused

Segment 1 pointer

Segment 2 pointer

Segment 3 pointer

Segment n pointer

Segment 3

Segment 2

Segment 1

Segment n

Segment 1 pointer

Segment 2 pointer

Segment 3 pointer

Segment n pointer

Segment 1

Segment 2

Segment n

viral code

Figure 5 - Routine Replacement Infection

2.5. Virus Self–protection

One of the latest advances in the area of virus creation

has been stealth. The first viruses were extremely obvious.

Soon after infection, the user would be well aware of their

presence. This is no longer the case. Numerous mechanisms of

infection delay are used in the current generation of

viruses. These range from simple reference to the system

clock to sophisticated monitoring of system resource and

application usage.

16

 If a virus is detected quickly, it is eliminated just

as quickly. If, however, a virus does not make its presence

known for a period of time, there is a much greater

likelihood that the virus will be able to spread to

additional media and/or computer systems.

The latest generation of viruses comes equipped with

anti–viral application detection and bypassing, as well as

viral code encryption to protect themselves. These techniques

greatly hamper attempts to maintain a computer system free

from unwanted viral code [17].

The specifics of these protection techniques are not

within the scope of this paper. Detailed explanations of the

various virus self–protection techniques can be found in

David Ferbrache’s book, A Pathology of Computer Viruses [15].

2.6. Approaches to Virus Protection

2.6.1. Traditional Approaches

2.6.1.1. Boot–time Scanning

The most time–honored method of dealing with the threat

of computer viruses is boot–time scanning. This requires a

program that runs each time the computer is booted. Once in

execution, this virus checker scans the system for any signs

of viruses or viral activity. The amount of functionality

varies greatly from applications that merely report the

presence of a virus to those that can correct any problems

encountered.

17

There are always tradeoffs between speed, size and

functionality. Where one application may always be present in

the computer’s memory, another may run once and exit. The

former would by necessity, on most microcomputers, be small

to satisfy the requirements of background tasks. The latter

need not deal with this constraint.

The problem with this technique of virus detection is

that it assumes that the virus detection application has not

itself become the victim of a viral attack. This would render

the virus checking application inactive and leave the user

with the erroneous impression that the system is secure. This

concern is addressed in the section on application

self–checking (see Application Self–checking page 18).

2.6.1.2. Application Executable Checksumming

Currently the most popular idea being discussed in the

virus news group on the Internet is application protection by

checksumming. This technique requires that upon installation

a checksum of the application executable be made and entered

into a database. Periodically, the checksum is verified to

determine if the applications currently logged have been

modified. If so, the user can be informed that the system has

been attacked and that it is necessary to perform an analysis

of the system using a virus scanner and also reload any

affected applications.

The weakness of this methodology is similar to that of

application self–checking. The database and application that

18

perform the verification of the application checksums are

resident in the memory system of the computer. If a virus is

aware of the presence of such an application, it may infect

registered applications and then modify the corresponding

entries in the checksum database.

2.6.1.3. Application Self–checking

An anti–virus technique that is gaining popularity among

software publishers is self–checking. The application runs

code which looks at multiple elements of the application

executable for congruity to a set of established data. If the

self–check fails, the application reports that it has been

tampered. For obvious reasons, virus detection software

usually employs this type of self–protection.

Applications protected by this technique are more

difficult to attack. There is concern, however, that these

applications may become the target of ‘designer viruses’.

These viruses would be written to attack specific

applications. Creation of this type of virus would require

that the application first be disassembled to determine what,

if any, self–checking code is in place. It is a simple task

to infect the application and then either modify the baseline

data or eliminate the self–check code. The former would be

simpler since the self–check code may be threaded through by

other portions of the application to ensure that it is not

tampered with.

19

2.6.2. Problems With Traditional Approaches

The problem inherent in all the traditional methods for

virus protection is that they depend on the virus scanning or

self–checking code to remain itself uncorrupted and capable

of detecting viruses or alterations in the system state.

Unfortunately, they respond very poorly when new types of

viruses or exotic strains of existing viruses are introduced

into the system.

2.6.3. Aardvark’s Approach

Aardvark is designed to assure the integrity of

applications regardless of whether or not viruses are present

on the system. The approach taken by Aardvark is to assure

the integrity of the application executable by having an

encrypted executable. This encrypted application executable

is only decrypted on a segment-by-segment basis as it is

loaded into instruction memory. This memory is available for

reading only by the processor during the actual execution of

instructions. An additional layer of protection is provided

by logic which computes a checksum of the application

executable prior to loading. This ensures that there have

been no gross level modifications attempted. The SROM is

protected from abuse through logic which validates low–level

or hazardous system calls. This methodology effectively

isolates any computer virus which attacks an Aardvark–based

computer system.

20

2.7. Difficulties in Research

One might imagine that the subject of computer viruses

would be one like any other. In order to study the subject,

one should be able to go to a library, locate the catalog

entries concerned with computer viruses, both book and

periodical, and retrieve the pertinent information. Following

the initial research, one would set up several machines and

infect them with viruses acquired from various sources. The

effects of the viruses on the systems could then be evaluated

and possible solutions tested for effectiveness.

The reality of the situation is that doing any research

in the area of computer viruses is very difficult. The

creators of computer viruses wish to have their names famous

but not their identities. The companies who design virus

detection software do not wish to divulge the techniques used

by virus writers to prevent would–be virus writers from

learning them. For the same reason, sources to decompiled

viruses cannot be found in any of the source code archives on

the Internet.

Trying to set up a testing facility for virus testing is

like trying to set up a bubonic plague test center. Everyone

acknowledges the value of the work and good intentions and

appreciate that plans to take every possible safety

precaution, but they would prefer that you take your “toxic

waste dump” to another state, thank you very much.

One of the greatest roadblocks in virus research is the

parent of the Computer Security Center, the National Security

21

Agency (NSA). According to a public affairs officer with the

NSA, “[Computer viruses are] just one of those things we

don’t talk about [9,10].” Fred Cohen of the University of

Cincinnati was told by an NSA employee that “You’re not going

to do any research on viruses if we can help it …” It has

been speculated that the NSA injected a computer virus into

the Iraqi defense system during the Gulf War. The NSA has

refused to comment on the story even though it is considered

to be a hoax [5,11].

22

3. COMPUTER ARCHITECTURES

3.1. Conventional Computer Architecture

Many different strategies have been used to design

computer architectures. In the past twenty years, the

industry has settled on one particular architecture for

microcomputer design. In this model, there is an SROM (System

ROM) or kernel, a contiguous main memory, a host of internal

I/O devices (e.g., keyboard, screen, mouse, fixed and

removable media) and external I/O devices (e.g., printer

ports, serial communications ports, network ports). All of

these elements of the architecture provide it with a great

deal of flexibility and configurability in that a stock

machine may be ‘stripped down’ to allow for special purpose

applications or enhanced as newer technologies present

themselves. The portion of the traditional computer

architecture I will focus on is the CPU to memory subsystem.

The conventional microcomputer architecture’s CPU to memory

subsystem (see Figure 6 on page 24) is very straightforward

in both design and implementation. All major operating

systems available today treat the entire body of memory as

free for the application’s use. No distinction is made

between what is code, what is application stack space and

what is data. A program is unable to determine whether the

code being called is in RAM or ROM. This is not to say that

applications have free run of the entire address space of the

23

machine because, in general, this is simply not the case. It

merely points out that checks must be made to insure that

applications do not overrun themselves or other applications

including the operating system during the course of

execution. It is while resident in memory that data is

vulnerable. Applications make the assumption that data

structures maintained by them are valid. If a second

application were to corrupt these data structures, the first

would be unable to detect any such corruption. Also, in order

to execute an application, it must be present in memory.

While in this state, checks must be made to ensure that an

application does not read another’s code. This must be done

in order to preserve the security of certain applications.

24

SROM

main
memory
(RAM)

Address Bus
Data Bus

Figure 6 - Conventional Computer
Architecture

3.2. Aardvark’s Computer Architecture

3.2.1. Description of Aardvark

Aardvark’s computer architecture is pictured in Figure 7

on page 25. The term virus–resistant is used as opposed to

virus–proof because I do not believe that it is possible to

have a completely virus–proof computer system so long as the

elements of the operating environment (OS, user interface,

etc.) exist in software and not exclusively in firmware and

hardware. Although complete virus protection may be feasible

in dedicated systems such as embedded microcontrollers, the

continual upgrading required by most computer systems make

this implementation technique highly unlikely.

25

main
SROM

NVRAM

loader
SROM

Aardvark
Registers

Gopher
logic

memory
separate
I & D
(RAM)

Cricket
logic

Kinkajou
logic

Address Bus
Data Bus
Private Bus

Packrat
Logic

Dolphin
logic

Figure 7 - Aardvark’s Computer Architecture

The chief technique used by Aardvark in ensuring the

integrity of the environment for applications is the use of

application encryption. Every ‘trusted’ application is stored

in encrypted form. Only when the application executable is

loaded into the computer system’s active memory is it

decrypted. This decryption is performed within hardware. For

additional security, the encryption is performed on the

26

segment level. For purposes of this work, it will be

sufficient to refer to application executables using a

simplified segment model (see Figure 1 on page 9). The actual

mechanism used to accomplish application loading and

decryption are described in the section on application

executable loading (see Application Execution page 45).

3.2.2. Description of Subsystems

Aardvark can be viewed as a main processor connected to

a set of subsystems (see Figure 7 page 25). These subsystems

interact to provide virus protection. Each subsystem is named

for an animal having the attributes of the function performed

by the subsystem. Briefly, the subsystems perform the

following functions:

Cricket gross level application checksumming

Dolphin application executable segment decryption

Gopher NVRAM access control

Kinkajou Touch–Memory™ input control

Packrat SROM access control

27

4. ARCHITECTURAL ELEMENTS

4.1. Introduction

The intent of Aardvark is to prevent viruses from

spreading within a computer system. This section focuses on

the architectural elements used to accomplish this. It is not

possible to explain these elements in isolation in any

satisfactory manner. I have attempted to present them in a

way which provides the best basis for understanding the

overall operational mechanisms used within Aardvark. At times

there will be heavy use of forward references to material in

related sections of the architecture.

In order to protect the integrity of trusted

applications, it is necessary to maintain a set of baseline

data by which the integrity of the application may be

determined. This data is protected by physically separating

it from direct access by the computer system through the use

of fire walls in the form of highly autonomous subsystem

interfaces and related control logic.

4.2. Main Processor/Subsystem Communication

The main processor and subsystems communicate via a set

of dual–ported bidirectional off–processor registers (see

Figure 8 on page 28). These registers act as buffers between

the main processor and subsystems.

28

Subsystem
A logic

Aardvark
Registers

Address Bus
Data Bus
Private Bus

Subsystem
B logic

Subsystem
C logic

Figure 8 - Main Processor / Subsystem Communication

The main processor communicates via these Aardvark

registers using a memory–mapped scheme. Each subsystem has a

control and data register assigned to it and monitors its

control register waiting for appropriate control information

to be presented. Upon being strobed, the subsystem then

executes its designated task. During execution, the subsystem

may pass control and/or data back to the main processor via

the same control and data registers. This technique is the

same used with most conventional memory mapped computer

subsystems.

29

4.3. Non–Volatile RAM

4.3.1. Purpose

Aardvark uses non–volatile memory (NVRAM) to store the

trusted application baseline data used to verify the

integrity of the application executable. As mentioned in the

section on subsystem communication, the NVRAM is protected

from direct access by the main processor through buffering

logic (see Main Processor/Subsystem Communication page 27).

4.3.2. NVRAM Layout

The NVRAM (see Figure 9) is an array of entries

comprised of three sections: file signature, file checksum

and encryption key. The file signature is a 32 bit value

unique to each particular application executable. The file

checksum is a 32 bit value which represents a checksum of the

entire application executable. The encryption key is a 56 bit

value which is used to decrypt each of the segments of the

application executable.

NVRAM size application count

File Signature 1 File Checksum 1 Encryption Key 1

32 32 56

File Signature n File Checksum n Encryption Key n

unused

Figure 9 - Non-volatile RAM layout

30

4.3.3. NVRAM Hardware

The NVRAM could be implemented using the Dallas

Semiconductors DE1645EE NVSRAMs (Non–Volatile Static Random

Access Memory). These devices provide eight megabits (8Mbx1)

of non–volatile storage. Their access time of 70nS makes them

ideally suited for this application.

4.3.4. NVRAM Data Elements

4.3.4.1. File Signature

Each Aardvark application would have its own unique set

of file signatures. These would provide a mechanism by which

document creation could be tracked. As seen above, the size

of the application file signature value is 32 bits. This size

accommodates the needs of Aardvark to uniquely identify

applications and also allows for use outside the scope of the

virus–resistant nature of Aardvark.

The application file signature can be seen as a data

structure having three main elements (see Figure 10). These

elements are a unique application ID, an application type (or

class) and a block of application configuration data.

8 10 14

Configuration Data Application Type Application ID

Figure 10 - Application Signature Elements

31

4.3.4.1.1. Application Type

The application type represents the category in which

the application falls. Examples of possible application type

include: drawing (object oriented), painting (pixel

oriented), word processing, telecommunications, spreadsheet,

notebook, game, etc. The field is 10 bits wide allowing for

1024 possible types to be assigned.

4.3.4.1.2. Application ID

Each application which has been released by a commercial

manufacturer and is deemed to be ‘trusted’ will have a unique

application identification code. This code is 14 bits in

length allowing for 16,384 possible applications within a

particular application type.

4.3.4.1.3. Configuration Data

The configuration data element within the application

signature structure is itself a data structure. This

structure is composed of 8 bit flags which provide

information as to the structure of the application. The

assignment of these flags is shown in Figure 11 on page 32.

32

1234567 0

unused

trusted

Figure 11 - Configuration
Data Bit fields

The specifics of each bit field is discussed in those

sections using them.

4.3.4.1.4. File Signature Administration

The question naturally arises as to how the list of the

application types and IDs will be assigned and maintained.

This task would be undertaken by the organization for the

Aardvark computer architecture itself. This methodology of

application signature administration has been demonstrated to

work quite efficiently by Apple Computer, Inc. with their

Macintosh line of computers. When a new application is

created, a file signature is requested and specific file

creator and type (the two elements of the file signature) may

be requested. Apple Computer, Inc. then responds with file

creator and type assignments for the application in question.

This system has been in place at Apple since the inception of

the Macintosh computer in 1984. In the case of Aardvark–based

computer system applications, there is no vendor specific

component to the file signature. The vendor would need only

specify what type of application they were creating to

receive a file signature for the application.

33

4.3.4.2. Checksum

4.3.4.2.1. Overview

In order to provide a high level application

verification, there is a hardware verifiable 32–bit checksum

maintained in the NVRAM. It is computed using an algorithm

implemented in hardware to reduce the likelihood of reverse

engineering and increase speed of checksum computation.

4.3.4.2.2. Operation

When a request is made to the computer system to load an

application, a checksum of the application executable is

computed and compared with the checksum loaded into the

NVRAM. If the two values do not match, an error condition is

generated. The user is then informed that the application

load request could not be completed since there was apparent

corruption of the application executable image (see

Application Executable Checksumming page 47).

4.3.4.3. Encryption Key

4.3.4.3.1. Background

Since the trusted application executable is stored in

encrypted form, it is necessary to decrypt the individual

objects upon loading into memory during execution. The key

used for decryption of the application executable as well as

the file signature and checksum must be loaded into the NVRAM

of the computer during application installation. Two possible

34

methods exist for loading this data. The first is a fully

automatic data load and is intended for use with trusted

applications. The second is a semi–automatic data load. This

section will describe the first method. For information on

semi–automatic loading see Semi–automatic Key Loading on

page 64.

4.4. Application Executable Decryption Logic

4.4.1. Introduction

As mentioned in earlier sections, Aardvark encrypts the

segments of the application executable in order to provide

protection from viral incursion. The method of encryption

used by Aardvark is the Data Encryption Standard (DES).

4.4.2. Data Encryption Standard

The Data Encryption Standard (DES) is an encryption

method developed by IBM and the NSA. It was adopted in 1977

by the National Institute of Standards and Technology as the

standard for unclassified U.S. Government applications.

This method of encryption is known as a product cipher.

A 56–bit key is used to encipher 64–bit blocks of data

through a series of permutation and reblocking operations.

Questions arise as to the security of the encryption

[18]. Nevertheless DES is considered adequate for medium

security applications. The only known means to decipher

enciphered data without the key is via exhaustive search of

keys. Since the encryption key used for each trusted

35

application is unique, it is unlikely that an exhaustive

search of keys could be performed without significant

computer system performance degradation. The encryption key

is ensured to be unique through the use of Touch–Memory™

modules (see Touch Memory™ page 35).

4.4.3. DES Hardware

The DES encryption can implemented in hardware with the

VLSI Technologies VM007 DES Encryption chip. The speed of

enciphering in hardware is 192 megabits per second. The

VM007’s processing speed should ensure that there will be

little to no noticeable system degradation as the application

executable segments pass through the chip and into

instruction memory. Another reason to implement the

encryption mechanism in hardware is to reduce the likelihood

of cracking the encryption key via a software routine. The

speed of software implementations of DES are 20 kilobits per

second on a personal computer and 160 kilobits per second on

a VAX [12,13].

4.5. Touch Memory™

4.5.1. Overview

Aardvark uses Dallas Semiconductor’s DS1192

Touch Memory™ to ensure the integrity of the encryption key.

This device is a self–contained module which when connected

to a receiver transmits data in a serial stream. It contains

36

a 48–bit laser etched serial number and 1024 bits of

non–volatile memory.

Each Aardvark–based computer system as well as every

trusted application will come with its own Touch Memory™ key.

This ensures that every application will have a unique

encryption key. For details as to how the application

executable is paired with a Touch Memory™ key see

Application Encryption on page 73.

4.5.2. Touch Memory™ Interface

The Touch Memory™ is interfaced to the NVRAM subsystem

through the Touch Memory™ control logic (Kinkajou) (see

Figure 12 on page 37).

37

NVRAM

loader
SROM

Kinkajou
Logic

Touch
Memory

Interface

Address Bus
Data Bus
Touch Bus
Private Bus

K/data

K/strobe

within Aardvark registers

Figure 12 - Kinkajou Interface

When invoked by the installation routines, Kinkajou

reads the data from the Touch Memory™ via the Touch Memory™

socket on the front panel of the computer (see Figure 14 on

page 41) and transfers it into the NVRAM updating the

application count if necessary.

4.5.3. Encryption Key Expansion

The unique ID in the Touch Memory™ module is 48 bits

long. DES requires a key 56 bits in length. In order to

accommodate the DES key length requirement, the Touch Memory™

key must be extended from 48 to 56 bits by extracting bits

from the key and replicating them on either end of the key

38

(see Figure 13). This expansion is implemented in the

interface between the Touch Memory™ and NVSRAM. The negative

aspect of this method is that it may compromise the strength

of the key since the expansion method may be reverse

engineered.

7

48

56

7 6 6 7 7

Figure 13 - Encryption Key Expansion

39

5. APPLICATION LIFE CYCLE

5.1. Introduction

The most important feature of the Aardvark computer

architecture is to provide a secure environment for the

execution of applications. This section will explore the life

cycle of applications as they interact with Aardvark.

5.2. Application Installation

5.2.1. Overview

In order to use an application it must first be

installed on the computer system. In the case of Aardvark,

this process of installation has two separate paths: one for

‘trusted’ applications and one for non–trusted applications.

5.2.2. Non–trusted Application Installation

In the case of non–trusted applications, the

installation process is exactly as it would be on any

conventional computer system. The application is transferred

from its distribution media into the memory storage of the

computer system.

To install a non–trusted application as if it were

trusted, the application must be encrypted (see

Promoting Applications page 63) and a semi–automatic key load

performed (see Semi–automatic Key Loading page 64). These

40

extensions to the Aardvark computer architecture allows for a

greater degree of assurance for non–trusted applications.

5.2.3. Trusted Application Installation

5.2.3.1. Introduction

The installation of trusted applications requires

additional steps. The signature, checksum and encryption key

data must be loaded into the NVRAM (see NVRAM Data Elements

page 30). This data is loaded from a Touch Memory™ key (see

Touch–Memory™ page 35).

5.2.3.2. Installation Hardware Interface

5.2.3.2.1. Front Panel Interface

An Aardvark–based computer system has some additional

hardware mounted on the front panel of the computer for

interaction with the user (see Figure 14 on page 41). In

addition to the standard reset button and keyboard switch are

a mode selector switch and a Touch–Memory™ socket. The

functions of these two items will be explained as they are

introduced.

41

Reset Unlocked

Locked

Normal

Load

Touch Socket

Push Button Key Switch Touch–Memory™
Socket

Figure 14 - Aardvark-based Computer
Front Panel

5.2.3.2.2. Normal/Load Mode Switch

The installation of trusted applications requires that

the user first reboot the computer with the ‘Normal/Load’ key

switch in the ‘Load’ position. This switch controls the SROM

used by the computer and write access to the NVRAM (see

Figure 15 on page 42).

42

main
SROM

Normal / Load
Logic

CE

loader
SROM

CE

Address Bus
Data Bus

NVRAM

WE

Figure 15 - Normal/Load Switch Interface

It should be noted that the loader SROM is not subject

to the restrictions imposed by Packrat (see ROM Code

page 59).

The Normal/Load switch provides an additional layer of

control over the hardware. It prevents any write access to

the NVRAM. The switch is connected to selector logic which

when strobed by the processor’s Reset line selects between

the normal and load SROMs, and disables or enables the NVRAM

for writing (see Figure 16 on page 43). This provides a means

by which the machine can switch modes without powering down

during mode switches.

43

Normal / Load
Switch

Normal
Load
Logic

Reset

to chip and
write enables

Figure 16 - Normal / Load Logic

5.2.3.3. Installation User Interface

When an Aardvark–based computer system is booted in load

mode, the user is presented a simple menu–driven user

interface (see Figure 17 on page 44).

44

Select an operation to perform Select

Reboot
Load an application
Upgrade an application
Unload an application

Figure 17 - Top Level User Interface

The user then selects the ‘load an application’ option

and is presented with the application installation dialogue

(see Figure 18).

Insert the first installation diskette and new
application Touch–Memory™ key and then select the
Install button.

Install Cancel

Figure 18 - Installation User Interface

If the user confirms the request for installation, the

computer system installs the application, its associated

configuration files and NVRAM entry. The user may then exit

from installation mode and reboot the computer system in

normal mode. If the user cancels the request for

installation, the top–level interface is again presented (see

45

Figure 17 on page 44). At this point the user may either

select a different application or exit the installation

process entirely, as mentioned above.

5.3. Application Execution

5.3.1. Overview

When the user requests that the system load an

application for execution, a series of checks are made to

determine whether the application is trusted. If these checks

are passed without incident, application execution is allowed

to proceed. This section will detail the verification process

that occurs when an application executable is invoked.

5.3.2. Application Type Checking

Upon a request for application execution, the operating

system passes the file signature associated with the

application executable and stored in the computer system’s

directory structure to the off-processor register used by the

application type checking logic (Gopher). Gopher is then

invoked by strobing its control address (G/strobe). The

operating system then waits for Gopher to respond. The result

is loaded into the bidirectional Gopher data register

(G/data) and the strobe is tickled (see Figure 19 on

page 46).

46

main
SROM

Last Key

NVRAM

Last
Checksum

Address Bus
Data Bus
Private Bus

Gopher
logicG/data

G/strobe

within Aardvark registers

Figure 19 - Gopher Interface

Gopher searches the NVRAM for an entry that matches the

one passed to it. If one is found, the NVRAM entries for the

decryption key and checksum are transferred to the

off–processor registers ‘Last Key’ and ‘Last Checksum’

respectively. A positive return code is loaded into the

bidirectional Gopher data register, and the strobe is tickled

to let the operating system know that the search has been

completed. If the application file signature does not match

any in the NVRAM, the ‘Last Key’ and ‘Last Checksum’

registers are cleared, a negative return code is loaded into

the bidirectional Gopher data register and the strobe is

tickled.

47

If a negative response is returned from Gopher, the

application loader knows that the application is not trusted.

If this is the case, the application will be loaded without

activating the decryption logic. If a positive response is

returned, the application is assumed to be trusted and

decryption will take place during segment loading.

5.3.3. Application Checksumming

Once an application has been determined to be trusted,

it must be checksummed. As mentioned in the earlier section

on NVRAM data elements (see Checksum page 33), an application

checksum is stored in the NVRAM. This gross level checksum

provides a rapid, if not totally secure, method of assuring,

on a high level, that the application has not been tampered

with in any blatant manner.

The checksum is performed by hardware logic interfaced

via a strobe/bidirectional interface (Cricket). Cricket is

invoked by loading the bidirectional Cricket data register

(C/data) with the first word of the application executable

and then strobing its initiate address (C/strobe) . Cricket

initializes the checksum to a predetermined initialization

values and reads the data in C/data (see Figure 20 on

page 48). Cricket then acknowledges the data and waits for

additional data to be sent.

48

main
SROM

Last
Checksum

Address Bus
Data Bus
Private Bus

Cricket
logicC/data

C/strobe

within Aardvark registers

Figure 20 - Cricket Interface

When the entire application has been passed to Cricket

in this manner, the operating system signals that it has

completed the loading to Cricket via C/strobe. Cricket then

compares the checksum which it has computed against the value

in the last checksum data register. If the two match, a

positive status code is sent back to the operating system via

C/data. Otherwise, a negative status code is generated and

returned.

If a negative status code is returned from Cricket, the

user is informed that the application executable has been

corrupted and should be reloaded. If a positive status code

49

is returned from Cricket, the actual loading of the

application into memory is allowed to begin.

5.3.4. Application Executable Loading

5.3.4.1. Overview

Once the application executable has been verified as

being trusted and having a valid NVRAM checksum, the

operating system will initiate an executable load. As

mentioned earlier, Aardvark’s chief method of preventing

application executable viral infection is application

executable segment encryption (see

Aardvark’s Computer Architecture page 24). If a non–trusted

application has been requested to be loaded, it may do so

without having to pass through the decryption logic

(Dolphin).

5.3.4.2. Non–trusted Segment Loading

As mentioned above, if a non–trusted application is

being loaded, the segments do not pass through Dolphin. They

instead are loaded directly into instruction memory by the

segment loader.

5.3.4.3. Trusted Segment Loading

Before any segment of a trusted application executable

is loaded into instruction memory is passes through Dolphin

for decryption (see Figure 7 on page 25). Once decrypted the

segment is loaded into instruction memory. After all the

50

initial load segments of the application executable have been

loaded, the application will then be available for execution.

main
SROM

Dolphin
logic

Last Key

instruction
memory

Address Bus
Data Bus
Private Bus

within Aardvark registers

Figure 21 - Dolphin Interface

5.3.5. Segment Swapping

If the need arises for a segment of an application to be

swapped, the displaced segment is not swapped out to a high

speed swapping memory unit but rather overwritten. Any time a

new segment is required, it is loaded from disk. This

prevents any access to segments that are in memory in a

decrypted form and strengthens the protection against

modification of in memory code. The handling of in memory

segments is discussed further in the section on separate

51

instruction and data memory handling (see

Physically Separate I and D page 56).

5.4. Application Deinstallation

5.4.1. Overview

When the user determines that an application has reached

the end of its usefulness, the user may decide to deinstall

the old application and replace it with a new one.

5.4.2. Non–trusted Application Deinstallation

The deinstallation of non–trusted applications is

accomplished in the same way as on non–Aardvark computer

systems. The application is simply deleted from the computer

system’s storage along with any configuration files which may

accompany it.

5.4.3. Trusted Application Deinstallation

5.4.3.1. Introduction

The deinstallation of a trusted application requires not

only that the application executable and associated

configuration files be removed from the storage of the

computer systems, but also that the NVRAM entry relating to

the application be removed.

52

5.4.3.2. Deinstallation Hardware Interface

To deinstall an application and remove the NVRAM entry,

the computer system must be in load mode. This is

accomplished by selecting the ‘load’ position of the

‘Normal/Load’ switch and rebooting the computer system (see

Installation Hardware Interface page 40). The user then

instructs that the trusted application, its associated

configuration files and NVRAM entry be removed from the

computer system (see Deinstallation User Interface page 52).

The computer system may then be rebooted in normal mode.

5.4.3.3. Deinstallation User Interface

Once the computer system is booted into load mode, the

user is presented with the top level menu–based interface

(see Figure 17 on page 44). The user then selects the

‘deinstall application’ option and is presented with a list

of trusted applications from which to choose (see Figure 22

on page 53).

53

Select the application(s) to be deinstalled Deinstall

Cancel
WordPerfect
Lotus 1-2-3
Microsoft Works
Newton Development Kit
SuperPaint
Adobe Illustrator

Figure 22 - Deinstallation User Interface

Upon choosing one or more applications to deinstall, a

dialogue is presented requesting that each request to

deinstall an application be confirmed (see Figure 23).

You have requested to deinstall WordPerfect. This will
remove it from the computer system. Do you wish to
deinstall this applications?

Deinstall Cancel

Figure 23 - Deinstallation Confirmation
Dialogue

If the user confirms the request for deinstallation, the

computer system removes the NVRAM entry, its associated

configuration files and finally the application itself. The

user may then exit the deinstallation mode and reboot the

computer system in normal mode. If the user cancels the

request for deinstallation, the main deinstallation dialog is

again presented (see Figure 22). At this point the user may

54

either select a different application or exit the

deinstallation process entirely, as mentioned above.

5.5. Application Upgrading

5.5.1. Overview

It is the rare exception in the software industry when

an application never requires upgrading with either bug fixes

or new features. The Aardvark computer architecture allows

for this contingency in a straightforward manner.

5.5.2. Non–trusted Application Upgrading

A non–trusted application is upgraded on an

Aardvark–based computer system in the same manner that it

would be if it were on a non–Aardvark–based one. The

application executable and any pertinent support are removed

and replaced with the upgraded versions of the same (see also

Non–trusted Application Installation page 39).

5.5.3. Trusted Application Upgrading

Trusted applications must be upgraded through the same

mechanism used for installation and deinstallation of trusted

applications. The computer system is first booted in load

mode (see Installation Hardware Interface page 40). Next the

user selects the upgrade trusted application option from the

top–level installation dialogue (see Figure 17 on page 44).

The application upgrade dialogue then appears (see Figure 24

on page 55).

55

Insert the first upgrade diskette and new application
Touch–Memory™ key and then select the Upgrade button.

Upgrade Cancel

Figure 24 - Upgrade Confirmation Dialogue

The user is instructed to insert the first upgrade

diskette and new application Touch Memory™ key. The user may

then select the ‘Upgrade’ button to proceed with the upgrade

process or the ‘Cancel’ button to abort the process. If the

user chooses to proceed, they will be prompted if additional

diskettes are required during the upgrade process. Upon

completion of the upgrade process, the user is returned to

the top–level installation dialogue. At this point the user

can reboot the computer system in normal mode. If the user

selects to cancel, they are returned to the top–level

installation dialogue.

56

6. SYSTEM INTEGRITY

6.1. Introduction

Since a computer system is not merely a collection of

hardware, steps must be taken to insure the security of the

code during its execution. As seen earlier, the modification

of operating system code and the corruption of file

structures by accessing of low–level SROM calls represent

serious threats to applications and the operating system.

This section of this document addresses these areas.

6.2. Code Integrity

It is one thing to protect the distribution of an

application executable from viral infection and quite another

to ensure that there is no contamination while it is in

execution. The former is dealt with through the encryption of

the application executable’s segments. The latter is handled

through the use of several layers of protection.

6.2.1. Physically Separate I and D

A lack of memory has traditionally been a problem within

the community of computer users. In the early years of

computing this was mainly a hardware issue. At first it was

simply not possible and later not cost effective to provide

the physical memory required for large programs and large

in–memory data structures. Additionally, as technology

57

progressed, the definition of what constituted a large

program became ever bigger.

In order to cope with the unending requirements for

space, several techniques were developed. One of the most

significant of these was that of executable segmentation and

paging. This provided a mechanism which allowed execution of

applications with executables larger than the physical

address space would provide. On the hardware side came

physically separate address spaces for the application

executable’s code (instructions) and the variables used by

the application executable (data). This effectively doubled

the address space of the computer with minimal additional

control logic. This method of separating the address space

into two physical sections for instructions and data was

called the ‘[physically] separate I and D’ model.

As computer technology matured, techniques were

developed which allowed efficient handling of application

executables that required greater address space than the

computer could provide. The most well known of these

techniques is virtual memory management. Simply put “virtual

memory is memory that you think you have, but don’t.” This

allowed for applications which did not have to use segmented

data spaces, greatly simplifying the handling of large data

structures especially dynamically created ones.

These advances in address space management made

physically separate instruction and data space unnecessary.

58

The combination of hardware and software memory management

made it possible to handle most situations quite gracefully.

Currently most computer memory systems are designed with

a single physical address, referred to as a ‘[physically]

combined I and D’ model.

6.2.2. Application Executable Protection

Aardvark’s Computer Architecture (see Figure 7 on

page 25) uses the separate I and D model. This memory

implementation model was chosen to prevent modification of

application executables while they were in an unencrypted

state in the active memory of the microcomputer. Unlike the

traditional implementation of the memory separate I and D

model, Aardvark does not allow non–segment loader writing to

the Instruction address space. Additionally, the Instruction

address space cannot be read from (this includes the ROM

address space [see ROM Code page 59]) except by the

instruction loader. This greatly inhibits any attempt to

determine the method of encryption by comparing encrypted and

unencrypted versions of the same segment. This inhibition

factor of Aardvark may be nullified by the optional

encryption extension to the architecture (see Deterrent

page 68 and Encrypting User Applications page 62).

59

6.3. ROM Code

The ROM code, that code which is resident in the SROM,

is called by various applications during the normal operation

of a computer. In conventional computer architectures, this

code may be accessed by any application, both in the sense of

subroutine calling and also of reading the data stored in the

ROM itself. The open nature of this type of design allows any

application to access such functions as directory structure

manipulation routines, low level disk routines, etc. Viruses

exploit these operations heavily in order to invade computer

systems.

Aardvark deals with this issue with logic which acts as

a checkpoint between the caller of SROM routines and the SROM

routines (Packrat). The SROM is partitioned into two

addressable areas (see Figure 25).

user
routines

system
routines

System ROM (SROM)

Figure 25 - SROM
partitioning

When a call is made to a routine resident in the SROM

ROM, that address is hardware verified to determine its

60

origin. If the routine has been designated as a user routine

for general use, the routine is allowed to execute without

question. If however, the routine has been designated as a

system routine, then a check is made to verify that the

caller is a user level or another system level ROM routine

(see Figure 26). If so, the routine is allowed to execute. If

not, an error condition is generated. This error condition

takes the form of an interrupt generated by Packrat which is

addressed by the SROM and reported to the user via an error

dialogue.

user
routines

system
routines

Packrat
logic

current
routine
address

System ROM (SROM)

CECE

INT

Address Bus
Data Bus
Private Bus

within Aardvark registers

last
routine
address

IFETCH

Figure 26 - Packrat Interface

The actual implementation of Packrat is simple. The

‘last routine address’ is a transparent latch holding the

61

address of the last program counter value. It is loaded from

another transparent latch (current routine address)

containing the current value of the program counter. When an

instruction is accessed, the instruction’s address is put

onto the address bus and an instruction fetch sequence is

indicated on the processor’s control lines. The last routine

address latch loads the value of the current routine address

latch, and the current routine address latch loads the value

on the address bus. The current routine address is then

compared with a the system ROM routine address range and if

it falls outside of that range, the chip enable logic is

asserted. If the current routine address falls within the

range of the system ROM routines, the last routine address is

checked to verify that it falls within the range of the SROM

proper. If it does, the chip enable logic is asserted. If

not, an error is generated in the form of an interrupt.

The Packrat does not need to be separate from the

address decoder. It is illustrated in this manner for

clarity. In actual implementation, it would be best to have

the verification logic integrated with the address decoder

logic for speed considerations.

62

7. ARCHITECTURAL EXTENSIONS

7.1. General Comments

Aardvark is designed to be as open as possible while

providing the maximum protection to applications. This

section discusses architectural extensions which may be made

to the system to provide additional features which some users

may consider useful. It should be noted that any

modifications to the architecture may create situations which

compromise the systems ability to protect the encryption

mechanism.

7.2. Encrypting User Applications

7.2.1. Overview

Aardvark may be extended to allow for the encrypting of

user applications allowing the user to take existing

applications which are not inherently ‘trusted’ and promote

them to such a status.

Since this extension to the architecture would make it

possible for the direct comparison of encrypted and

non–encrypted executable code segments, a situation is

created in which the encrypting mechanism of the architecture

may be compromised. This is, of course, dependent upon the

encrypting mechanism used. There should be no problem with

systems such as DES, but other mechanisms for encryption may

be more susceptible to this type of reverse engineering.

63

7.2.2. Promoting Applications

In order to promote an application to trusted status,

additional hardware and software need to be introduced to

Aardvark’s architecture. Support logic (Ferret) which bridge

into Cricket, Dolphin and Kinkajou must be added (see

Figure 27).

Kinkajou
logic

loader
SROM

Aardvark
Registers

Ferret
logic

Cricket
logic

Address Bus
Data Bus
Private Bus

Dolphin
logic

Figure 27 - Executable Encryption Extension

The loader SROM must also be modified to take an

existing application executable and transfer it to diskette

after processing it through Cricket. Additionally, code must

be added to the loader SROM to update the user interface to

include this feature.

64

When an application is promoted, the user is informed of

the application signature and checksum. This information is

used when the application is installed. As mentioned earlier

the file signature is 32 bits wide. The first bit (bit 0 [see

Figure 11 on page 32]) indicates the type of file signature

(see Table 1).

0 trusted application
1 promoted application

Table 1 - File Signature Configuration Bit 0

Since the operation of application promotion is handled

using the loader SROM, it is possible that the user would

like the actual installation to be handled at the time of

promotion. This would require only code bridges between the

promotion and semi–automatic key loading.

7.2.3. Semi–automatic Key Loading

The decryption information required by the system cannot

be fully provided by the Touch Memory™ key when installing an

application into the system which has been promoted to the

status of trusted. Whereas in the case of the fully automatic

load, the Touch Memory™ key transfers the decryption key,

file signature and file checksum, the semi–automatic load

requires that the file signature and checksum be entered by

hand during the installation process.

This option would require additional code in the loader

SROM. The additional code would be minimal as the only change

would be the passing of the signature and checksum to the

65

NVRAM parallel loader. The hardware modification required

would be simply the addition of two memory–mapped registers

which would be gated into the NVRAM parallel loader after the

Touch Memory™ data had been loaded, thereby overriding the

default data.

7.3. Secure Distribution Media

7.3.1. Overview

The integrity of an application executable is dependent

upon all the intermediate forms it exists in before it is

installed on an Aardvark–based machine. The weakest link in

the distribution chain is that of the distribution media.

Software may be distributed in two ways so as to provide the

highest level of confidence in the distribution.

7.3.2. CDROM

The CDROM is very quickly becoming the most common and

popular form of distribution for large software packages.

Capable of holding 600MB on uncompressed data, the CDROM is

not sensitive to magnetic fields, requires little space and

most importantly, is not subject to modification. The main

drawback is that the media is not recyclable.

66

7.3.3. PCMCIA

PCMCIA is a group which has created an international

standard for platform independent computer peripherals. These

devices include everything from memory expansions to cellular

modems to silicon disks. One type of memory expansion is a PC

CARD containing only a ROM. As with CDROMs, PC CARD media

cannot be modified by normal means (i.e., through software),

but can be recycled if the PC CARD’s ROM is actually a

EEPROM. In this way, upgrades would not lead to a constant

accumulation PC CARDs and their associated Touch Memory™

keys. The old key and CARD can be returned for reuse.

7.4. Data File Security

Aardvark may be extended to provide a stronger data file

security. The system SROM may have the file handling routine

segregated in such a way as to require that file deletion be

handled either by the application which created the data file

or from the user interface only. Other applications would be

free to read information from these data files but not modify

or destroy them. This would effectively prevent an

application infected with a virus from attacking data files

present on the computer system.

When a request is made to open a file for write or

delete access, the data file creator ID would be checked

against the current application file signature file ID sub-

field. If the IDs matched, the operation would be allowed to

proceed. If they did not match, the file request would be

67

denied and the user would be informed via an error dialogue.

Since non–trusted applications have no associated file

signature, they would automatically be denied write and

delete access.

This mechanism does not prohibit the free flow of data

within the computer system. It does, however, add the

possible requirement that the user manually delete data for

which he/she does not have the creator application. Since

most data desired for import will be in a standard format, it

should require little effort to import the data with a

resident application and save the data to a file created by

the importing application.

68

8. SOFTWARE PIRACY

8.1. Summary Statement

Several questions arise regarding the issue of software

piracy as it relates to my proposed architecture. I will

address them in this section.

8.2. Scope

The scope of this proposed architecture does not deal

with the possibility that ‘trusted’ distribution media have

been tampered with. If a piece of software has been

‘cracked’, modified, re–encoded and redistributed there is

little that this architecture can do to help. The

architecture will deal with this by preventing the spread of

any virus through the same means which it uses to prevent

such a spread when a ‘non–trusted’ product containing a virus

is introduced to the system.

8.3. Deterrent

Aardvark, by its very design, discourages piracy. There

will no doubt be a minority population in the computer

community who will see this architecture as yet another

technical challenge to surmount. As mentioned in earlier

sections dealing with the specific implementation of the

segment encoding, it is intended to be very difficult to

decrypt the application programs loaded onto a computer using

69

this architecture. I do not consider this to be a serious

threat to the security of the machine. On the contrary, I

would think that the incidence of trusted application

infection and theft would decrease, since there is no way to

retrieve a decryption key from a machine once it has been

loaded.

If an individual copied a trusted application from a

machine based on Aardvark and loaded onto one not based on

Aardvark, the application would not execute since there would

be no mechanism for on–the–fly decryption. Similarly, if the

application were loaded it onto an Aardvark–based machine, it

would still not run since the decryption key for that

particular copy of the application would not be present. As

explained in an earlier section, it is not possible to load

the encryption key manually or for that matter retrieve it to

a human readable form without highly specialized hardware.

Even if the key were cloned, it would be highly prohibitive

to create and distribute.

Assuming that both the software and key are stolen, the

owner need only report the loss to the manufacturer. If any

problems arise, the individual would be identified

immediately via the software’s serial number. There is a high

degree of disincentive toward mass installation of an

application on a network.

It is also possible to protect a non–trusted application

from piracy. Any application may be encrypted using the ID

key which would come with each Aardvark–based computer (see

70

Encrypting User Applications page 62). Once this has been

accomplished the application may be transferred to diskette

and installed as if it were a trusted application.

71

9. Trusted Application Development

9.1. Introduction

In the creation of any new computer system, let alone a

completely new computer architecture, the question is, “Is

there software available?” The numerous failed computer

systems show that the availability of computer software is a

critical issue. The Aardvark computer architecture is

designed in such a way that it is very easy to create an

application for it or port an existing application to it.

9.2. Trusting Trust

How can you ensure that the trusted applications created

for a computer architecture which is highly virus–resistant

are free of viruses? Ken Thompson addresses this issue of

trust in his 1983 ACM award speech [14].

Basically, the problem is one of trust. It is impossible

to be 100 percent certain that an application executable not

personally assembled is not suspect. The task is to ensure a

high enough level of certainty so that there is confidence

that application development tools are free from viruses and

that the output of these tools are also.

It is presumed that the development tools used on an

Aardvark–based computer system are themselves trusted. If

this assumption is true, then no problems should arise with

any application produced by these development tools.

72

9.3. Application Creation

In order to create an application which can be run on an

Aardvark–based computer system, the most important rule to

follow is: Thou shalt not write self–modifying code. As seen

in the section on physically separate I and D (see

Physically Separate I and D page 56), it is imperative that

application be written is such a way as to not use this

technique of coding, since the application executable code is

not accessible by the application itself.

A second rule to follow is: Thou shalt not imbed data in

code segments. Since the instruction and data memory spaces

are physically separate, there is not way to access any data

embedded within the application code.

Aardvark requires well disciplined and modular

programming, both in terms of the code and data structures.

This programming philosophy can already be seen to a large

degree in the Apple Macintosh application environment.

Although there is not hardware support for it, there is a

clearly defined separation of code and data, and also a

separation of pure data (akin to flat files) and structured

extensible data (i.e., code and data resources).

As mentioned in the section on file signatures (see

File Signature Administration page 32), the individual

application types and IDs would be assigned by the

organization maintaining the Aardvark computer architecture.

A company would need only request a new file signature based

on the application type.

73

9.4. Application Encryption

Once an application has been created for or ported to an

Aardvark–based computer, it is necessary to encrypt the

application executable prior to distribution. This process is

similar to that explained in the section on application

encryption (see Encrypting User Applications page 62). The

only difference is that, in the production environment, the

duplication of large quantities of the application would

require a mechanical mechanism to feed the Touch Memory™ keys

to the system for programming and additional software in the

loader SROM to handle such mass duplication.

9.5. Application Distribution

Distribution of Aardvark–based computer application

software is accomplished in the same manner as

non–Aardvark–based software. As seen from the section on

application installation (see Application Installation

page 39), the only additional material needed to be packaged

and distributed is the Touch Memory™ key. All other materials

and channels of distribution remain the same.

74

10. CONCLUSIONS AND RECOMMENDATIONS

10.1. Conclusions

The Aardvark architecture is one that addresses the

issue of viral instantiation into application executables.

Its additional protection of low level system routine

strengthens the protection of the computer system as a whole.

In most cases this is all that is necessary to prevent the

spread of viruses.

The problem of data file infection is not dealt with

extensively. There is, however, provision within the scope of

the architecture for addition of mechanisms which would

disallow access to data files by all but trusted

applications. This is briefly discussed in the section on

extensions.

In the final analysis, the effectiveness of this design

proposal cannot be fully evaluated unless a prototype is

constructed. When viewed in isolation and together, the

elements of this architecture lead to the conclusion that the

architecture is sound and will indeed act as an effective

deterrent to computer viruses.

75

10.2. Recommendations

There is sufficient material presented in this document

for Aardvark to be implemented by a development team within a

period of 18 months. I would recommend that such action be

taken. My reasoning for this is two–fold. First, I would like

to see the new concepts in virus–resistant computer

architecture exploited and put into the public sector.

Second, greater exploration of this type of architecture is

needed. The implementation of the architecture would lead to

additional and possibly more comprehensive solutions to the

ongoing problem of computer viruses.

As with the introduction of any new technology, there

will be a large initial investment on the part of those who

decide to pursue this architecture. Although the hardware

needed to modify an existing microcomputer–based architecture

are minimal (additional control logic, additional SROMs,

NVRAM, etc.), a paradigm shift will be needed on the part of

both the computer industry and the computer user. At the

present it is considered sufficient to periodically scan for

viruses and recover from the attacks which occur. The

computer community must come to see that if virus–free

environments are to exist, computers must be designed to

withstand viral attacks. This paradigm shift is akin to the

one which occurred regarding graphical user interfaces

(GUIs). At one time GUIs were considered a curiosity. They

are now not only a reality, but a standard feature which we

have come not only to appreciate but expect.

76

REFERENCES

R.1. General References

Anderson, Ian. “Viral invader spreads havoc in American

computers.” New Scientist 120 (12 November 1988): 24.

“Army to award contract for studying potential of computer

viruses as electronic countermeasure.” Aviation Week 132

(14 May 1990): 38.

Barron, Janet. “Two Mac viruses.Byte 14 (June 1989): 278.

“Beware of vandalware.” IEEE Spectrum 28 (February 1991): 66.

“Carleton University Hi–Tech Update ‘88.” IEEE Communications

27 (May 1989): 74.

Chapman, Gary. “CSPR statement on the computer virus.” CACM

32 (June 1989): 699.

Cipra, Barry. “Eternal plague: computer viruses.” Science 249

(21 September 1990): 1381.

“Computer Viruses ‘89.” Datamation 35 (1 April 1989): 60–1.

“Cornell issues report on computer worm.” Computer 22 (June

1989): 99.

Crawford, Diane. “Two bills equal forewarning.” CACM 32 (July

1989): 780–2.

Denning, Peter. “Computer viruses.” American Scientist 76

(May/June 1988): 236–8.

Denning, Peter. “The Internet worm.” American Scientist 77

(March/April 1989): 126–8.

77

Dewdney, A. “Computer recreations; of worms, viruses and Core

War.” Scientific American 260 (March 1989): 110–3.

Diehl, Stanford. “Rx for safer data.” Byte 16 (August 1991):

218–24+.

Dutton, Gail. “At the edge of chaos: artificial life?”

IEEE Software 9 (January 1992): 88–9.

Eisenberg, Ted. “The Cornell Commission: on Morris and the

worm.” CACM 32 (June 1989): 706–9.

Fainberg, Tony. “The night the network failed.” New Scientist

121 (4 March 1989): 38–42.

Farber, David. “NSF poses code of networking ethics.” CACM 32

(June 1989): 688.

Ferbrache, David. A Pathology of Computer Viruses. London:

Springer–Verlag, 1992.

Flynn, Jennifer. 20th Century Computers and How They Worked.

Carmel, Indiana: Alpha Books, 1993.

Fox, Barry. “Computers get stoned on patent discs.”

New Scientist 131 (10 August 1991): 24.

Greenberg, Ross. “Know thy viral enemy.” Byte 14 (June 1989):

275–80.

Hilton, Phil. “IBM fails to squash ‘virus’ scare.”

New Scientist 118 (14 April 1988): 34.

Hirst, Joe. “Rotten to the core: bombs, Trojans, worms and

viruses.” New Scientist 121 (4 March 1989): 40–1.

Hodges, Parker. “The viral age.” Datamation 34 (1 December

1988): 96.

78

Holden, Constance, ed. “Rogue AIDS disk alarms researchers.”

Science 247 (5 January 1990): 24.

“How deadly is the computer virus?” Electrical World 202

(July 1988): 35–6.

Joyce, Edward. “Software viruses: PC–health enemy number

one.” Datamation 34 (15 October 1988): 27–8+.

Kocher, Bryan. “A hygiene lesson.” CACM 32 (January 1989):

3+.

Lefohn, Allen. “The computer virus.” JAPCA 38 (September

1988): 1102.

Lerner, Eric. “Computer virus threatens to become epidemic.”

Aerospace America 27 (February 1989): 14–6+.

Marshall, Eliot. “The scourge of computer viruses.” Science

240 (8 April 1987): 133–4.

Marshall, Eliot. “Worm invades computer networks.” Science

242 (11 November 1988): 855–6.

Marshall, Eliot. “The worm’s aftermath.” Science 242 (25

November 1988): 1121–2.

McAfee, John. “The virus cure.” Datamation 35 (15 February

1989): 29–40.

McLean, John. “The specification and modeling of computer

security.” Computer 23 (January 1990): 9–16.

Mickle, Marlin. “A holistic response to viruses.” IEEE Micro

9 (June 1989): 89.

Nordwall, Bruce. “Rapid spread of virus confirms fears about

danger to computers.” Aviation Week 129 (14 November

1988): 44.

79

Preiss, Ralph. “Position paper on computer viruses planned.”

Computer 22 (February 1989): 82.

Rochlis, Jon. “With microscope and tweezers: the worm from

MIT’s perspective.” CACM 32 (June 1989): 689–98.

Saeed, Faisel. “International Microcomputer Software Inc.”

Computer 24 (October 1991): 86–7.

Saffo, Paul. “Consensual realities in cyberspace.” CACM 32

(June 1989): 664–5.

Schlack, Mark. “How to keep viruses off your LAN.” Datamation

37 (15 October 1991): 87–8+.

Seeley, Donn. “Password cracking: a game of wits.” CACM 32

(June 1989): 700–3.

Shulman, Seth. “(Artificial) germ warfare.” Technology Review

94 (October 1991): 18–9.

Spafford, Eugene. “Crisis and aftermath (Internet worm).”

CACM 32 (June 1989): 678–87.

“Time bomb ticks in computer networks.” New Scientist 124 (21

October 1989): 26.

Waldrop, M. “PARC brings Adam Smith to computing.” Science

244 (14 April 1989): 145–6.

Wallich, Paul. “Hostile takeovers: how can a computer welcome

only friendly users?.” Scientific American 260 (January

1989): 22+.

“Wanted: computer virus antidote.” Design News 44 (19

December 1988): 36.

Watts, Susan. “‘Health campaign’ needed to beat computer

virus.” New Scientist 121 (21 January 1989): 26.

80

Watts, Susan. “Sloppy software was AIDS disc’s Achilles

heal.” New Scientist 125 (6 January 1990): 34.

81

R.2. National Security Agency

Bamford, V. James. The Puzzle Palace. New York City: Penguin

Books, 1983.

Black, Peter. “Soft Kill.” Wired 1 (July/August 1993): 49–50.

“Electric Word.” Wired 1 (September/October 1993): 31.

Holden, Constance, ed. “Viral tall tale?” Science 255 (24

January 1992): 406–7.

Marshall, Eliot. “Worm invades computer networks.” Science

242 (11 November 1988): 855–6.

82

R.3. Data Encryption

Banerjee, S.K. “High speed implementation of DES”

Computers and Security 1 (1982): 261–7.

Brassard, Gilles. Modern Cryptography. New York City:

Springer–Verlag, 1988.

Computer Security. Alexandria: Time–Life Books, 1986.

Denning, Dorothy E. R. Cryptography and Data Security.

Reading: Addison–Wesley, 1983.

MacMillan, D. “Single chip encrypts data at 14Mb/s”

Electronics 54 (16 June 1981): 161–5.

Williams, D. and Hindin, H.J. “Can software do encryption

job?” Electronics 53 (3 July 1980): 102–3.

83

R.4. Virus Creators

Brunner, John. The Shockwave Rider. New York City: Harper &

Row, 1975.

Gerrold, David. When Harley Was One. Garden City: Nelson

Doubleday, 1972.

Hafner, Katie and Markoff, John.

Outlaws and Hackers on the Computer Frontier. New York

City: Touchstone, 1991.

Ryan, Thomas J. The Adolescence of P1. New York City:

MacMillian, 1977.

Shea, Robert and Wilson, Robert Anton.

The Illuminatus Trilogy. New York: Dell, 1975.

84

R.5. Computer Architecture

Stone, Harold S. and Siewiorek, Daniel P. Introduction to

Computer Organization and Data Structures: PDP–11

Edition. New York City: McGraw–Hill, 1975.

Tanenbaum, Andrew S. Structured Computer Organization.

Eaglewood Cliffs: Prentice Hall, 1976.

TMS320C3x Users Guide. Houston: Texas Instruments, 1992.

85

R.6. Citations

1. “Cornell issues report on computer worm.” Computer 22

(June 1989): 99.

2. Denning, Peter. “The Internet worm.” American Scientist 77

(March/April 1989): 126–8.

3. Eisenberg, Ted. “The Cornell Commission: on Morris and the

worm.” CACM 32 (June 1989): 706–9.

4. Fainberg, Tony. “The night the network failed.”

New Scientist 121 (4 March 1989): 38–42.

5. Marshall, Eliot. “Worm invades computer networks.” Science

242 (11 November 1988): 855–6.

6. Marshall, Eliot. “The worm’s aftermath.” Science 242 (25

November 1988): 1121–2.

7. Rochlis, Jon. “With microscope and tweezers: the worm from

MIT’s perspective.” CACM 32 (June 1989): 689–98.

8. Spafford, Eugene. “Crisis and aftermath (Internet worm).”

CACM 32 (June 1989): 678–87.

9. Holden, Constance, ed. “Viral tall tale?” Science 255 (24

January 1992): 406–7.

10. Black, Peter. “Soft Kill.” Wired 1 (July/August 1993):

49–50.

11. “Electric Word.” Wired 1 (September/October 1993): 31.

12. MacMillan, Dave. “Single chip encrypts data at 14Mb/s”

Electronics 54 (16 June 1981): 161–5.

86

13. Williams, Deborah. and Hindin, Harvey J. “Can software do

encryption job?” Electronics 53 (3 July 1980): 102–3.

14. Thompson, Ken. “Reflections on trusting trust.” CACM 27

(August 1984): 761-3.

15. Ferbrache, David. A Pathology of Computer Viruses.

London: Springer–Verlag, 1992.

16. ---, 31-6.

17. ---, 73-82.

18. Brassard, Gilles. Modern Cryptography. New York City:

Springer–Verlag, 1988.

19. Holden, Constance, ed. “Rogue AIDS disk alarms

researchers.” Science 247 (5 January 1990): 24.

87

APPENDIX A - EXOTIC HARDWARE DATASHEETS

A.1. Overview

This appendix contains datasheets for the exotic

hardware required for Aardvark. It is not necessarily the

case that the vendors specified for these components and

subsystems are the only one, but merely those I have used for

the basis of the design.

88

A.2. DE1645EE NVSRAM

96

A.3. VM007 DES Encrypter/Decrypter

115

A.4. Touch Memory™

124

VITAE

Charles James Wilson, B.S.C.S.

PO Box 202287

Austin TX 78720-2287

mailto:pathfinder@acm.org

Professional Objective:

My professional objective is to work for a progressive

organization designing and developing the human interface

aspects of systems which will allow for less threatening,

more productive end–user systems.

The Dreamers Guild, Inc. 6/91 - 8/92

Human Interface Designer / Chief Operating Officer

The Dreamers Guild is a privately held company focused

primarily on the entertainment industry working with software

and music systems. I consulted on user interface issues of

projects being undertaken by the company.

I performed a user interface redesign and restructuring

of the underlying data model for a system which interfaced a

Hell CMYK color separating scanner to a Macintosh (ScanMac).

I also wrote the user documentation for ScanMac.

In February of 1992, I became the company’s chief

operating officer responsible for managing the company’s

in–progress projects, handling the office equipment

management, project timelines and resource allocation.

125

Ambassador College 8/90 - 5/91

Consultant

Ambassador College is a liberal arts college in Big

Sandy, Texas. While there, I lent my skills to their computer

services department and advised them on issues of networking,

hardware support and equipment acquisition. I specified the

requirements for the their computer repair facility and

severe electrical storm protection.

Tri–Data Systems, Inc. 4/89 - 8/90

User Interface Designer

Tri–Data Systems, Inc. (later acquired by Avatar) is a

telecommunications company which produces microcomputer to

IBM mainframe gateways and an IBM 3270 terminal emulator.

I redesigned and re-implemented the company’s IBM 3270

terminal program with special attention being given to the

user interface. I added an interface to allow for IBM 3270

function keys to be mapped to the keyboard at the user’s

discretion. I also created a multi–programmer/multi–computer

development environment platformed on the MPW environment

allowing for structured hierarchical projects, programs and

the overriding of both libraries and include files.

Additionally, I provided internal Macintosh technical

support for MPW, C, hardware and general Macintosh operating

system issues. Finally, I provide typographic, layout and

copy editing support to the marketing department.

126

Qubix Graphic Systems, Inc. 5/87 - 4/89

Software Engineer

The Leonardo, is a high–end technical illustration

system platformed on Sun Microsystems computers with a

proprietary user interface. I created a utility to take very

low resolution Kanji raster fonts and produce high resolution

vector representations for use with Leonardo. I rewrote the

company’s vector font editor to allow for use with the

multi–megabyte Kanji fonts. I redesigned the interface of the

Leonardo product creating a set of interface guidelines which

enabled the streamlining of the product for its use with a

standard Sun monitor. I then designed and developed the user

interface for the Macintosh version of the Leonardo working

with the engineering and marketing departments.

Volt Information Sciences/Autologic 7/85 - 5/87

System Manager/Software Engineer

Volt Information Sciences designed a completely

integrated electronic publishing system for the Army. I acted

as LAN administrator and systems manager.

Autologic produces a text composition software package

called MicroComposer™. I developed MicroComposer’s raster

graphics editor. I also developed an implementation of the

Kermit protocol for the Convergent Technologies NGEN.

Additionally, I provided hardware and software internal

technical support.

127

General Electric Company 3/84 - 6/85

Scientific Applications Programmer

While awaiting my security clearance I worked with Data

Systems Resource Management, the research arm of GE Space

Systems, where I conducted a study of laser printer usability

with the Convergent Technologies NGEN and provided internal

CTOS system and Convergent hardware support. I also

redesigned and ported a PDL analysis program from the VAX to

the Convergent Technologies MegaFrame and NGEN. Following my

clearance, I programmed scientific applications in FORTRAN on

an IBM 370.

applied computing devices, inc. summer/83

Programmer

I developed the user interface of a telecom system on an

IBM Series 1 running under CPIX, a UNIX–like operating

system. I also designed and developed a source code

management system under the Bourne shell.

ExperCamp summer/81-82

Instructor

Computer Camp, Inc. (now ExperCamp, a division of

ExperTelligence, Inc.). was the first commercial computer

instruction camp for seven to seventeen year olds. I was both

camp counselor and computer language class instructor,

teaching BASIC, LOGO, assembler, and FORTH.

128

Rose–Hulman Institute of Technology 9/80 - 6/84

Grader/Teaching Assistant/System Manager

I graded homework for the FORTRAN, C, and APL language

classes. I was also the teaching assistant for the FORTRAN

language classes. Additionally, I was the Computer Science

Department’s systems manager.

